Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
Углы одного треугольника относятся как 3: 5: 7, а во втором один из углов на 24 градуса больше второго и на 24 градуса меньше 3 угла. Докажите, что треугольники подобны. Пусть углы треугольника 3х, 5х, 7х. Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180° Составляем уравнение 15х = 180° ⇒ х=12° Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84° и угол на 24° меньше третьего - угол в 60°=84°-24° Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36° углы второго треугольника 84°; 60° ; 36° Треугольники подобны по трём углам.
трапеция;
∠DAC = 63˚;
∠ACJ = 27˚;
D₂K = 10;
IJ = 12.
D₂К соединяет середины отрезков DE и AC.
IJ соединяет середины отрезков AD и EC.
Найти:(AC * DE) * 1/2 = ?
Решение:Пусть дана произвольная трапеция ADEC, где AC - большее основание (сумма углов при большем из оснований 63° + 27° = 90°), а DE - меньшее соответственно.
Продлим боковые стороны нашей произвольной трапеции до их пересечения. Обозначим пересечение точкой В.
Нетрудно заметить, что △ABC - прямоугольный (поскольку можно увидеть, что ∠DAC + ∠ACJ = 63˚ + 27° = 90° - сумма острых углов в прямоугольном треугольнике => ∠АВС прямой и равен 90°).
Обозначим середину большего из оснований произвольной трапеции, допустим, точкой К. Тогда из свойства, мы можем утверждать, что ВК - медиана прямоугольного △ABC.
Мы знаем, что медиана всегда делит отрезок, параллельный тому, к которому проведена медиана, на два равных, т.е. в данной ситуации она оба основания нашей трапеции делит пополам так, что AK = KC и DD₂ = D₂E.
Исходя из этих объяснений, запишем формулу для серединного отрезка к противоположным сторонам трапеции IJ.
IJ = 1/2 * (AC + DE).
D₂K = ВК - ВD₂. Известно, что ВК и ВD₂ медианы, проведённые из вершины прямого угла, которые по свойству медианы прямоугольного треугольника равны половине гипотенузы. То есть BK = AC * 1/2 (по свойству), соответственно BD₂ = DE * 1/2, откуда D₂K = 1/2 * (AC - DE).
Исходя из этого, мы можем сказать, что:
AC = D₂K + IJ = 10 + 12 = 22; DE = IJ - D₂K = 12 - 10 = 2.
Теперь остается найти полупроизведение этих оснований.
(AC * DE) * 1/2 = (22 * 2) * 1/2 = 44 * 1/2 = 44/2 = 22.
ответ: (AC * DE) * 1/2 = 22.Пусть углы треугольника 3х, 5х, 7х.
Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180°
Составляем уравнение
15х = 180° ⇒ х=12°
Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84°
и угол на 24° меньше третьего - угол в 60°=84°-24°
Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36°
углы второго треугольника 84°; 60° ; 36°
Треугольники подобны по трём углам.