1) Вписанный угол измеряется дугой, на которую он опирается верно
2) Окружность и секущая не имеют общих точек
3) Вписанные углы, опирающиеся на полуокружность - прямые верно
4) Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности верно
3
В трапецию, высота которой равна 17, вписана окружность. Найдите радиус этой окружности. R=8,5
4
Градусная мера дуги равна 40 градусов. Найдите градусную меру центрального угла, соответствующего этой дуге 80°
5
Даны окружность с центром О радиуса 5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между касательными, если ОА = 10см.
° Отв: 60°
6
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15. Отв: R=8
7
Сторона квадрата равна 13. Найдите радиус вписанной окружности. Отв: r=6,5
ответ записать без пробелов, единиц измерения, в десятичной дроби ставим ЗАПЯТУЮ!
8
Радиус окружности, проведенный к точке касания...
1)образует с касательной угол меньше 90 градусов неверно
2)образует с касательной угол больше 90 градусов неверно
3)перпендикулярен касательной верно
4)параллелен касательной неверно
9
В равностороннем треугольнике высота равна 15. Найдите радиус описанной окружности Отв: R=10
10
Сколько общих точек имеют окружность и касательная? Отв: 1 общую точку
11
В равностороннем треугольнике радиус вписанной окружности равен 2,7. Найдите радиус окружности описанной около этого треугольника. Отв: R=5,4
12
Градусная мера дуги равна 40 градусов. Найдите вписанный угол, который опирается на эту дугу. Отв: 40°
13
Вписанный угол окружности равен 40 градусов. Найдите градусную меру дуги, на которую он опирается.
Отв: 40°
14
Точки А и В разделили окружность на дуги, градусные меры которых относятся как 4:5. Найдите градусную меру большей дуги. Отв: 200°
15
В ромб вписана окружность.Её радиус равен 13. Найдите высоту ромба. Отв: 26
3)LO и OM это радиусы, следовательно их длины равны. Треугольник LOM - прямоугольный, следовательно по теореме пифагора 32^2+32^=x^2
4)Проведем отрезок ОN - это радиус. угол NOM - центральный, следовательно его градусная мера равна градусной мере дуги, на которую он опирается, следовательно угол NOM=134 градуса. Треугольник MON - равнобедренный (OM и ON равны как радиусы). Следовательно, угол ONM равен углу OMN=23 градуса ((180-134)/2). Угол ОМК - развернутный, следовательно угол OMN+угол NMK=180 градусов. Угол NMK=180-23=157 градусов
5)Проведем биссектрису ОА. Треугольник ОАВ - прямугольный (т.к. касательная перпендикулярна радиусу ОВ. Угол ОАВ=30 градусов (ОА - бисс). Следовательно, угол АОВ=180-90-30=60 градусов. Те же рассуждения применительный и к другому треугольнику, следовательно угол АОВ равен углу АОС=60 градусов. Вместе они образуют искомый угол ВОС=120 градусов
Объяснение:1
1)Сколько общих точек имеют окружность и секущая?
Укажите верные утверждения:
1)3
2)нет общих точек
3)1
4)2 верно
2
Укажите верные утверждения:
1) Вписанный угол измеряется дугой, на которую он опирается верно
2) Окружность и секущая не имеют общих точек
3) Вписанные углы, опирающиеся на полуокружность - прямые верно
4) Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности верно
3
В трапецию, высота которой равна 17, вписана окружность. Найдите радиус этой окружности. R=8,5
4
Градусная мера дуги равна 40 градусов. Найдите градусную меру центрального угла, соответствующего этой дуге 80°
5
Даны окружность с центром О радиуса 5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между касательными, если ОА = 10см.
° Отв: 60°
6
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15. Отв: R=8
7
Сторона квадрата равна 13. Найдите радиус вписанной окружности. Отв: r=6,5
ответ записать без пробелов, единиц измерения, в десятичной дроби ставим ЗАПЯТУЮ!
8
Радиус окружности, проведенный к точке касания...
1)образует с касательной угол меньше 90 градусов неверно
2)образует с касательной угол больше 90 градусов неверно
3)перпендикулярен касательной верно
4)параллелен касательной неверно
9
В равностороннем треугольнике высота равна 15. Найдите радиус описанной окружности Отв: R=10
10
Сколько общих точек имеют окружность и касательная? Отв: 1 общую точку
11
В равностороннем треугольнике радиус вписанной окружности равен 2,7. Найдите радиус окружности описанной около этого треугольника. Отв: R=5,4
12
Градусная мера дуги равна 40 градусов. Найдите вписанный угол, который опирается на эту дугу. Отв: 40°
13
Вписанный угол окружности равен 40 градусов. Найдите градусную меру дуги, на которую он опирается.
Отв: 40°
14
Точки А и В разделили окружность на дуги, градусные меры которых относятся как 4:5. Найдите градусную меру большей дуги. Отв: 200°
15
В ромб вписана окружность.Её радиус равен 13. Найдите высоту ромба. Отв: 26
1)28 градусов; 2)110 градусов; 3; корень из 2048 (то есть 32 корней из двух) 4) 157 градусов; 5) 120
Объяснение:
1) находим градусную меру дуги МК (180-124)=56. Вписанный угол МНК равен половине дуги МК=28 градусов
2) дуга НК=200 градусов, следовательно дуга НМК равна 160. Угол НМК - вписанный, следовательно дуга МК=50 градусов. Отсюда дуга НМ=110 градусов (160-50)
3)LO и OM это радиусы, следовательно их длины равны. Треугольник LOM - прямоугольный, следовательно по теореме пифагора 32^2+32^=x^2
4)Проведем отрезок ОN - это радиус. угол NOM - центральный, следовательно его градусная мера равна градусной мере дуги, на которую он опирается, следовательно угол NOM=134 градуса. Треугольник MON - равнобедренный (OM и ON равны как радиусы). Следовательно, угол ONM равен углу OMN=23 градуса ((180-134)/2). Угол ОМК - развернутный, следовательно угол OMN+угол NMK=180 градусов. Угол NMK=180-23=157 градусов
5)Проведем биссектрису ОА. Треугольник ОАВ - прямугольный (т.к. касательная перпендикулярна радиусу ОВ. Угол ОАВ=30 градусов (ОА - бисс). Следовательно, угол АОВ=180-90-30=60 градусов. Те же рассуждения применительный и к другому треугольнику, следовательно угол АОВ равен углу АОС=60 градусов. Вместе они образуют искомый угол ВОС=120 градусов