Треугольник прямоугольный и равноберенный. Так как высота и биссектриса совпадают (одно и тоже) , тогда это еще и медиана. Такое возможно только в равнобедренном или равностороннем треугольнике.
Наш треугольник не может быть равносторонним, так как по условию он прямоугольный, а значит он будет еще и равнобедренным, углами 90°, 45°, 45°.
Теперь рассмотрим ∆АМС, он будет прямоугольный за счет АМ высоты. <АМС=90°, а так как АМ еще и биссектриса, то АМ=МС и <МАС=<МСА= 180°-90°=90° на два оставшихся угла по сумме углов в треугольнике. <МАС=<МСА=45°, <АМС=90°, а значит и ∆АМС равноберенный и прямоугольный.
Объяснение:
№5
Вариант 1.
По теореме: отрезки касательных, проведенные из одной точки к окружности, равны.
Исходя из этого:
АК=СК
ВК=DK
Так как
АВ=АК–ВК
СD=CK–KD
То:
АВ=СD.
Вариант 2.
Вариант 2.Проведём АС и BD.
По теореме: отрезки касательных, проведенные из одной точки к окружности, равны.
Тогда:
СК=АК
КВ=КD
Углы АКС и ВКD равны как вертикальные. Пусть каждый из них равен Y.
Рассмотрим треугольник АКС
СК=АК
Тогда треугольник равнобедренный с основанием АС.
Тогда угол АСК=(180–Y)÷2
Рассмотрим треугольник ВКD.
КВ=КD
Тогда треугольник равнобедренный с основанием BD
Тогда угол BDK=(180°–Y)÷2
Следовательно угол BDK=угол АСK.
Тогда АС||ВD, а углы BDC и АСD накрест-лежащие при параллельных прямых АС и ВD и секущей СD.
Объяснение:
Треугольник прямоугольный и равноберенный. Так как высота и биссектриса совпадают (одно и тоже) , тогда это еще и медиана. Такое возможно только в равнобедренном или равностороннем треугольнике.
Наш треугольник не может быть равносторонним, так как по условию он прямоугольный, а значит он будет еще и равнобедренным, углами 90°, 45°, 45°.
Теперь рассмотрим ∆АМС, он будет прямоугольный за счет АМ высоты. <АМС=90°, а так как АМ еще и биссектриса, то АМ=МС и <МАС=<МСА= 180°-90°=90° на два оставшихся угла по сумме углов в треугольнике. <МАС=<МСА=45°, <АМС=90°, а значит и ∆АМС равноберенный и прямоугольный.