У завданнях 1-6 виберіть правильну відповідь.
1. Яке з наведених висловлювань має такий самий зміст, що і висловлювання «Площини α і β мають спільну точку А»?
A. Площини α і β не мають інших спільних точок, крім точки A.
Б. Площини а і β можуть мати ще тільки одну спільну точку.
B. Площини α і β перетинаються по прямій, що проходить через точку A.
Г. Площини α і β перетинаються, і лінією їхнього перетину є відрізок із серединою в точці A.
2. Через яку з наведених фігур можна провести більше ніж одну площину?
A. Кінці однієї діагоналі паралелограма і середину іншої діагоналі.
Б. Діаметр кола і точку цього кола, що не належить діаметру.
B. Сторони кута, що не є розгорнутим.
Г. Середини всіх сторін трикутника.
3. Трапеція ABCD (BC і AD — основи трапеції) і ромб BCEF не лежать в одній площині. Які з наведених прямих є мимобіжними?
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
У завданнях 1-6 виберіть правильну відповідь.
1. Яке з наведених висловлювань має такий самий зміст, що і висловлювання «Площини α і β мають спільну точку А»?
A. Площини α і β не мають інших спільних точок, крім точки A.
Б. Площини а і β можуть мати ще тільки одну спільну точку.
B. Площини α і β перетинаються по прямій, що проходить через точку A.
Г. Площини α і β перетинаються, і лінією їхнього перетину є відрізок із серединою в точці A.
2. Через яку з наведених фігур можна провести більше ніж одну площину?
A. Кінці однієї діагоналі паралелограма і середину іншої діагоналі.
Б. Діаметр кола і точку цього кола, що не належить діаметру.
B. Сторони кута, що не є розгорнутим.
Г. Середини всіх сторін трикутника.
3. Трапеція ABCD (BC і AD — основи трапеції) і ромб BCEF не лежать в одній площині. Які з наведених прямих є мимобіжними?
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°