решить задачу фото немогу скинуть, откройте учебник автор Кукарцева Сборник задач по геометрий в рисунках и тестах 7-9 класс там задание на странице 69 задача номер 11 решить
Высота равностороннего треугольника со стороной а = 2, разбивает его на два равных прямоугольных треугольника с гипотенузой а = 2 и острыми углами 30° и 60°. По определению синус острого угла прямоугольного треугольника = отношению ПРОТИВОЛЕЖАЩЕГО катета (h) к гипотенузе а = 2
sinα =
h = a * sinα = 2 * = √3 - высота равностороннего треугольника
Кратчайшее расстояние от точки Р до плоскости треугольника - перпендикуляр к плоскости треугольника, основание которого делит высоту треугольника в отношении 2 : 3, считая от вершины h : 3 * 2 = 2h : 3 = 2√3/3
В прямоугольном треугольнике с гипотенузой с = 5 и катетом b = 2√3/3, по т. Пифагора
Т.к. диагональ является биссектрисой острого угла, то угол между диагональю и большим основанием равен углу между диагональю и верхним основанием, это внутренние накрест лежащие, при параллельных основаниях и секущей диагонали, значит, боковая сторона равна меньшему основанию. т.к. треугольник, образованный боковой стороной, данной диагональю и верхним основанием оказался с двумя равными углами при основании. А если их вершны тупого угла опустить высоту 12 см, то отрезки, которые отсекает высота на нижнем большем основании равны по √(13²-12²)=5
Тогда нижнее основание равно 2*5+13=23, а периметр 23+13+13+13=23+39=62/см/
площадь же найдем, как полусумму оснований умнож. на высоту, т.е.
По определению синус острого угла прямоугольного треугольника = отношению ПРОТИВОЛЕЖАЩЕГО катета (h) к гипотенузе а = 2
sinα =
h = a * sinα = 2 * = √3 - высота равностороннего треугольника
Кратчайшее расстояние от точки Р до плоскости треугольника - перпендикуляр к плоскости треугольника, основание которого делит высоту треугольника в отношении 2 : 3, считая от вершины h : 3 * 2 = 2h : 3 = 2√3/3
В прямоугольном треугольнике с гипотенузой с = 5 и катетом b = 2√3/3, по т. Пифагора
5² = (2√3/3)² + х²
х² = 23
х =
Т.к. диагональ является биссектрисой острого угла, то угол между диагональю и большим основанием равен углу между диагональю и верхним основанием, это внутренние накрест лежащие, при параллельных основаниях и секущей диагонали, значит, боковая сторона равна меньшему основанию. т.к. треугольник, образованный боковой стороной, данной диагональю и верхним основанием оказался с двумя равными углами при основании. А если их вершны тупого угла опустить высоту 12 см, то отрезки, которые отсекает высота на нижнем большем основании равны по √(13²-12²)=5
Тогда нижнее основание равно 2*5+13=23, а периметр 23+13+13+13=23+39=62/см/
площадь же найдем, как полусумму оснований умнож. на высоту, т.е.
(13+23)*5/2=90/см²/