Если в трапеции провести среднюю линюю, то она будет параллельна основаниям. Теперь рассмотрим треугольник, образованный диагональю, боковой стороной и МЕНЬШИМ основанием. В этом треугольнике часть средней линии трапеции тоже будет средней линией (параллельна основанию и проходит через середину одной стороны), поэтому средняя линяя трапеции проходит через середину диагонали. Кроме того, отрезок средней линии трапеции между диагональю и боковой стороной равен половине МЕНЬШЕГО основания.
Ясно, что все это справедливо и для другой диагонали, другой боковой стороны и другого отрезка средней линии между ними.
Получилось, средняя линяя проходит через середины диагоналей, и делится диагоналями на три отрезка, крайние из который равны половине меньшего основания.
Третий отрезок (a и b - основания трапеции, b - меньшее)
x = (a + b)/2 - (b/2 + b/2) = (a - b)/2, чтд.
На самом деле про середины можно сразу сослаться на теорему о пропорциональных отрезках секущих линий между параллельными прямыми. Из неё сразу следует, что прямая, проходящая через середину какой-то боковой стороны, поделит пополам и диагонали, и другую боковую сторону, и высоту, и вообще любой прямой отрезок, соединяющий точки верхнего и нижнего оснований.
Что касается расчета, то и его можно сделать проще, хотя казалось бы - куда проще.
Дело в том, что отрезок средней линии от левой боковой стороны до ближайшей диагонали равен половине меньшего основания (как средняя линия в треугольнике, образованном левой боковой стороной, меньшим основанием и этой диагональю), а - ТОЧНО ТАК ЖЕ - отрезок средней линии трапеции от левой боковой стороны до СЛЕДУЮЩЕЙ диагонали является средней линией в треугольнике, образованном левой боковой стороной, большим основанием и этой самой диагональю, то есть это отрезок равен половине большего основания. Искомый же отрезок равен их разности, откуда сразу получается ответ, даже и считать ничего не надо.
а) От М до АD ровно столько , сколько от M до точки N - середины АD, потому что MN перпендикулярно к AD. KN =AB=12 MK=5 MN -гипотенуза тр-ка MNK, равна корню из квадратов катеров KN и MK, то есть MN=13.
б) BM - гипотенуза BMK, ВК=АD / 2 =5 MK=5 BM= корень(50) = 5корень(2) Площадь АМВ = ВМ* AB /2 = 5 корень(2) *12/2 = 30корень(2) Проекция АМВ на плоскость есть тр-к АKB и у них одна длина AB Площадь АKB / BK = Площадь АMB / MB отсюда Площадь АKB = Площадь АMB / MB *ВK =30корень(2) / (5 корень(2)) * 5 = 30 Зметим, что треугольник AMB наклонен под 45 градосув к плоскости проекции, поэтому о и больше в корень(2) раз.
Но можно было и просто посчитать Площадь АKB = AB*BK/2= 12*5/2= 30
в) чтобы определить расстояние надо найти наименьшее расстояние между прямыми. Из любой точки одной прямой можно опустить перпендикуляр на вторую, и из любой точки второй - перпендикуляр на первую, однако только тогда, когда эти перпендикуляры совпадают, то есть проведён единственный перпендикуляр, он и окажется наименьшим. Такой перпендикуляр всегда существует, хоть он иногда имеет нулевую длину, если прямые пересекаются.
В нашей задаче к прямым ВМ и AD, которые сами не параллельны, сушествует обший перпендикуляр AB, он будет и единственным "двойным" перпендикуляром, и самым коротким поэтому, и равен 12. это и будет расстоянием между ВМ и AD.
Если в трапеции провести среднюю линюю, то она будет параллельна основаниям. Теперь рассмотрим треугольник, образованный диагональю, боковой стороной и МЕНЬШИМ основанием. В этом треугольнике часть средней линии трапеции тоже будет средней линией (параллельна основанию и проходит через середину одной стороны), поэтому средняя линяя трапеции проходит через середину диагонали. Кроме того, отрезок средней линии трапеции между диагональю и боковой стороной равен половине МЕНЬШЕГО основания.
Ясно, что все это справедливо и для другой диагонали, другой боковой стороны и другого отрезка средней линии между ними.
Получилось, средняя линяя проходит через середины диагоналей, и делится диагоналями на три отрезка, крайние из который равны половине меньшего основания.
Третий отрезок (a и b - основания трапеции, b - меньшее)
x = (a + b)/2 - (b/2 + b/2) = (a - b)/2, чтд.
На самом деле про середины можно сразу сослаться на теорему о пропорциональных отрезках секущих линий между параллельными прямыми. Из неё сразу следует, что прямая, проходящая через середину какой-то боковой стороны, поделит пополам и диагонали, и другую боковую сторону, и высоту, и вообще любой прямой отрезок, соединяющий точки верхнего и нижнего оснований.
Что касается расчета, то и его можно сделать проще, хотя казалось бы - куда проще.
Дело в том, что отрезок средней линии от левой боковой стороны до ближайшей диагонали равен половине меньшего основания (как средняя линия в треугольнике, образованном левой боковой стороной, меньшим основанием и этой диагональю), а - ТОЧНО ТАК ЖЕ - отрезок средней линии трапеции от левой боковой стороны до СЛЕДУЮЩЕЙ диагонали является средней линией в треугольнике, образованном левой боковой стороной, большим основанием и этой самой диагональю, то есть это отрезок равен половине большего основания. Искомый же отрезок равен их разности, откуда сразу получается ответ, даже и считать ничего не надо.
а) От М до АD ровно столько , сколько от M до точки N - середины АD,
потому что MN перпендикулярно к AD.
KN =AB=12 MK=5
MN -гипотенуза тр-ка MNK, равна корню из квадратов катеров KN и MK,
то есть MN=13.
б) BM - гипотенуза BMK, ВК=АD / 2 =5 MK=5
BM= корень(50) = 5корень(2)
Площадь АМВ = ВМ* AB /2 = 5 корень(2) *12/2 = 30корень(2)
Проекция АМВ на плоскость есть тр-к АKB и у них одна длина AB
Площадь АKB / BK = Площадь АMB / MB
отсюда Площадь АKB = Площадь АMB / MB *ВK =30корень(2) / (5 корень(2)) * 5 = 30
Зметим, что треугольник AMB наклонен под 45 градосув к плоскости проекции,
поэтому о и больше в корень(2) раз.
Но можно было и просто посчитать Площадь АKB = AB*BK/2= 12*5/2= 30
в) чтобы определить расстояние надо найти наименьшее расстояние между прямыми.
Из любой точки одной прямой можно опустить перпендикуляр на вторую, и из любой точки второй - перпендикуляр на первую, однако только тогда, когда эти перпендикуляры совпадают, то есть
проведён единственный перпендикуляр, он и окажется наименьшим.
Такой перпендикуляр всегда существует, хоть он иногда имеет нулевую длину, если прямые пересекаются.
В нашей задаче к прямым ВМ и AD, которые сами не параллельны, сушествует обший перпендикуляр AB, он будет и единственным "двойным" перпендикуляром, и самым коротким поэтому, и равен 12. это и будет расстоянием между ВМ и AD.