Треугольник АВС с прямым углом А. АН - высота, опущенная из прямого угла на гипотенузу, которая делит прямоугольный треугольник на два подобных друг другу и исходному. Катет АВ = 10(дано), ВН - 8 (проекция этого катета на гипотенузу) Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10. Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм. По Пифагору АН = √(АВ²-ВН²) = 6дм. АС = √(АН²+НС²) = 7,5дм Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
Из подобия тр-ков АВС, НВА и НАС имеем: АВ/ВН = ВС/ВА, то есть 10/8 = ВС/10.
Отсюда ВС = 100/8 = 12,5дм. НС= ВС-ВН = 12,5 - 8 = 4,5дм.
По Пифагору АН = √(АВ²-ВН²) = 6дм.
АС = √(АН²+НС²) = 7,5дм
Итак, второй катет = 7,5дм, гипотенуза ВС = 12,5дм
P.S
после того, как нашли гипотенузу = 12,5 можно сразу узнать второй катет: √(12,5²-10²) = 7,5дм.
В основании правильной пирамиды - правильный треугольник. Вершина S проецируется в центр О основания. Высота правильного треугольника СН= (√3/2)*а, где а - сторона треугольника. СН=13√3/2. В правильном треугольнике высота=медиана и делится центром в отношении 2:1, считая от вершины. => HO=(1/3)*CH, а СО=(2/3)*СН или СО=13√3/3, НО=13√3/6.
По Пифагору:
Боковое ребро пирамиды SC=√(CO²+SO²) = √(313/3).
Апофема (высота боковой грани) SH=√(НO²+SO²) = √(745/12).
Боковая поверхность Sбок = (1/2)*3*АВ*SH =(39/4)*(√(745/3).