Пусть основание равно 6х, тогда боковая сторона равна 5х. Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая. Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5. Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75. С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая.
Запишем теорему Пифагора для одного из прямоугольных треугольников:
Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5.
Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75.
С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть:
ответ: 7,8125
Объяснение:
1. Сумма углов выпуклого многоугольника равна 180°*(n-1), где n -
количество углов выпуклого многоугольника.
S=180°*(7-2)=180°*5=900°.
2. S=6*7=42 (cм²).
3. S=180°*(13-2)=180°*11=1980°.
4. 15*7=105 (cм²).
5. S=ah/2 h=2S/a=2*45/18=90/18=5 (cм).
6. (1/2) основания = √(15²-9²)=√(225-81)=√144=12 (см).
S=12*9=108 (cм²).
7. Пусть меньшая диагональ - х. ⇒
Большая диагональ - х+8.
24+8=32 (см). ⇒
S=(24*32)/2=12*32=384 (cм²).
8. S=10*9,5=95 (дм²) s=0,5²=0,25 (дм²) ⇒
N=95/0,25=380 (квадратов).