В плоскости треугольника от шара "остается" вписанная в треугольник окружность. Чтобы найти радиус r этой окружности, надо сначала вычислить площадь треугольника.
Полупериметр p = (9 + 13 + 14)/2 = 18; p - 9 = 9; p - 14 = 4; p - 13 = 5;
S^2 = 18*9*5*4 = 18^2*10;
Поскольку S = p*r, то r^2 = 10; (напоминаю, что р - ПОЛУпериметр, то есть ПОЛОВИНА)
Радиус шара, расстояние от центра шара до плоскости сечения шара (это плоскость треугольника), и радиус окружности в сечении связаны теоремой Пифагора, то есть
1) Раз плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см. 2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
В плоскости треугольника от шара "остается" вписанная в треугольник окружность. Чтобы найти радиус r этой окружности, надо сначала вычислить площадь треугольника.
Полупериметр p = (9 + 13 + 14)/2 = 18; p - 9 = 9; p - 14 = 4; p - 13 = 5;
S^2 = 18*9*5*4 = 18^2*10;
Поскольку S = p*r, то r^2 = 10; (напоминаю, что р - ПОЛУпериметр, то есть ПОЛОВИНА)
Радиус шара, расстояние от центра шара до плоскости сечения шара (это плоскость треугольника), и радиус окружности в сечении связаны теоремой Пифагора, то есть
R^2 = r^2 + 6^2;
R^2 = 46;
R = корень(46)
Однако вы там числа правильные дали?
2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°