Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
Обозначим точки касания окружности треугольника : О - центр окружности , точка М∈АВ , точка К∈ АС, точка F∈CВ ОК перпендикулярно АС, ОF перпендикулярно ВС ( как радиусы проведённые в точки касания) . Четырехугольник ОКСF - квадрат т.к ОК=OF Гипотенуза АВ иочкой касания М разбивается на 2 отрезка АМ и МВ. Обозначим АМ=Х , тогда МВ=12-Х. По свойству касательных, проведённых из одной точки) имеем: АМ=АК=Х BF=ВМ=12-Х CF=CK=r=2 Сторона АС=Х+2 , Сторона ВС=(12-Х+2)=14-Х По теореме Пифагора : АВ²=АС²+ВС² подставим : (Х+2)²+(14;-Х)²=12²
Х²+4Х+4+196_28Х+Х²=144 2Х²-24Х+28=0 Х²-12Х+28=0 D=12²-4·28=144-112=32 √D=√32=4√2 Х1=6+2√2 Х2=6-2√2 Если АМ=6+2√2 , то АС=8+2√2 , ВС= 8-2√2 Если АМ=6-2√2 , то АС=8-2√2, ВС=8+2√√2 SΔ=1|2 AC·BC SΔ=1/2(8+2√2)(8-2√2)=1/2·(64-8)=1/2·56=28 ответ:28
Доказательство утверждения проводится следующим образом. Сначала принимают предположение, что утверждение неверно, а затем доказывают, что при таком предположении было бы верно некоторое утверждение , которое заведомо неверно. Полученное противоречие показывает, что исходное предположение было неверным, и поэтому верно утверждение , которое позакону двойного отрицания равносильно утверждению .
В интуиционистской логике закон исключённого третьего не действует, поэтому такие доказательства в ней не принимаются.
ОК перпендикулярно АС, ОF перпендикулярно ВС ( как радиусы проведённые в точки касания) . Четырехугольник ОКСF - квадрат т.к ОК=OF
Гипотенуза АВ иочкой касания М разбивается на 2 отрезка АМ и МВ.
Обозначим АМ=Х , тогда МВ=12-Х. По свойству касательных, проведённых из одной точки) имеем: АМ=АК=Х BF=ВМ=12-Х CF=CK=r=2
Сторона АС=Х+2 , Сторона ВС=(12-Х+2)=14-Х
По теореме Пифагора : АВ²=АС²+ВС² подставим :
(Х+2)²+(14;-Х)²=12²
Х²+4Х+4+196_28Х+Х²=144
2Х²-24Х+28=0
Х²-12Х+28=0
D=12²-4·28=144-112=32 √D=√32=4√2
Х1=6+2√2
Х2=6-2√2
Если АМ=6+2√2 , то АС=8+2√2 , ВС= 8-2√2
Если АМ=6-2√2 , то АС=8-2√2, ВС=8+2√√2
SΔ=1|2 AC·BC
SΔ=1/2(8+2√2)(8-2√2)=1/2·(64-8)=1/2·56=28
ответ:28