Решить задачу по определению основных характеристик и элементов треугольника. А (0;-1), B(12;8), С (10;-4)
Найти :
1) периметр треугольника АВС;
2) уравнения сторон АВ, ВС и СА и их угловые коэффициенты;
3) внутренние углы треугольника АВС в радианах с точностью до 0.01 радиана;
4) уравнение высоты CН и ее длину;
5) уравнение медианы АМ и ее длину;
2. Опустим высоту из вершины. Имеем прямоугольный треугольник с гипотенузой 10см, катетом, который лежит на основании трапеции, длиной в 12:2=6. По теореме Пифагора найдем второй катет, который является высотой трапеции: см. Рассмотрим другой прямоугольный треугольник, который сотворен диагональю (гипотенуза), высотой (катет) и вторым катетом, который лежитт на большем основанием трапеции, найдем его: см. Найдем большее основание: 6+15=21см, меньшее: 15-6=9см. cм².
3. Угол между высотами паралелограма, проведенными из вершины острого угла, равен тупому углу паралелограма. Значит меньший угол равен 180-150=30. см²
Катет, лежащий напротив угла 30 град равен половине гипотенузы. Гипотенузу АВ принимаем за Х, тогда катет ВС=Х/2.
S=АС*ВС / 2, т.е. 1058 корень из 3 = АС*ВС / 2. Находим АС по т.Пифагора: АС^2= АВ^2 - ВC^2= Х^2 - (Х/2)^2= Х^2 - Х^2 / 4. Отсюда, АС = Х*корень из 3 / 2. Теперь в формулу площади (см.выше) подставляем полученное значение АС и ВС. Преобразовав, получаем уравнение: корень из 3 * Х^2 / 8 = 1058 корень из 3. Отсюда, Х^2 = 8464, Х = -92 и Х = 92. Х= -92 не удовлетворяет условию, т.к. сторона не может иметь отрицательное значение длины, поэтому отбрасываем это значение. Итак, за Х мы принимали гипотенузу АВ, т.е.АВ=92, значит, катет ВС=Х/2 = 92/2=46.