решить задачу В прямоугольных треугольниках АВС и А1В1С1,катет АС равен катету А1С1, а катет ВС-катету В1С1.Чему равна гипотенуза А1В1 в треугольнике А1В1С1, если гипотенуза АВ треугольника АВС равна 5 см.Объясните почему?
Дано: правильная четырехугольная призма, => основание призмы - квадрат S квадрата = а², а - сторона квадрата D=25 см H=15 см
1. прямоугольный треугольник: гипотенуза D=25 см - диагональ правильной четырехугольной призмы катет Н = 15 см - высота правильной четырехугольной призмы катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4
основание призмы - квадрат
S квадрата = а², а - сторона квадрата
D=25 см
H=15 см
1. прямоугольный треугольник:
гипотенуза D=25 см - диагональ правильной четырехугольной призмы
катет Н = 15 см - высота правильной четырехугольной призмы
катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
D²=H²+d²
25²=15²+d², d²=25²-15², d²=625-225. d²=400
2. прямоугольный треугольник:
катет а= катету b
гипотенуза d (диагональ квадрата)
по теореме Пифагора:
a²+a³=d³, 2a²=d²
2a²=400
a²=200, => S квадрата =200 см²
ответ:
площадь основания правильной четырехугольной призмы =200 см²
4 см
Объяснение:
Так как высота АМ , проведённая из вершины равнобедренного треугольника, является медианой и биссектрисой, то углы ∠ВАМ и ∠САМ равны, а так как ∠ ВАС = 90 °, то они равны 45°.
Известно, что сумма углов треугольника равна 180°, значит в ΔСАМ ∠АСМ = 180° - 90° - 45° = 45°, а следовательно ΔСАМ - равнобедренный, что означает равенство сторон АМ и СМ
Высота АМ (медиана и биссектриса) делит сторону ВС на 2 равные части, а так как ВС = 8, то значит, что МС = 1/2 * 8 = 4, а так как МС = АМ, то и АМ = 4