№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
Построим треугольник соответствующий условиям:
АС=28 см.
Угол В=60°
ВС на 20 см больше АВ.
Тогда пусть сторона ВС будет равна х сантиметров, а сторона АВ х-20 см.
По теорем косинусов:
АС²=BC²+AB²-2*BC*AB*cos B
28²=x²+(x-20)²-2*x*(x-20)*cos 60°
784=x²+x²-40x+400-2(x²-20x)*0.5
784= x²+x²-40x+400-x²+20x
784=x²-20х+400
Решим полученное уравнение:
x²-20x+400-784=0
x²-20x-384=0
D=(-20)²-4*1*(-384)
D=1936
x₁=(20-√1936)/2*1=-12
x₂=(20+√1936)/2*1=32
Так как сторона не может быть меньше 0:
ВС=32 см
АВ=32-20=12 см
Периметр равен:
P=28+32+12=72 см.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10
КД=10-6=4.
Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА
ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10
ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52
решаем уравнение х=6,КР=10+6=16