В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
gratem04
gratem04
20.12.2020 10:09 •  Геометрия

решите 1,2,4 задачу (раздельно идут задачи , мне нужно сдать сегодня.


решите 1,2,4 задачу (раздельно идут задачи , мне нужно сдать сегодня.

Показать ответ
Ответ:
dghhhghhhvj
dghhhghhhvj
08.07.2022 02:15

Объяснение:

Значения тригонометрических функций (которые нужно знать наизусть)

 

 

30  °   45  °  

60  °  

sin  α     12   2–√2   3–√2  

cos  α   3–√2   2–√2   12  

tg  α     3–√3   1   3–√  

 sinα=противолежащий катетгипотенуза sinα=ac;cosα=прилежащий катетгипотенуза cosα=bc;tgα=противолежащий катетприлежащий катетtgα=ab.  

Как выбрать правильную функцию?

Если используются только катеты, применяется tg.

 

Если используется гипотенуза (дана или надо вычислить), то применяются sin или cos.

 

Если используется противолежащий катет (дан или надо вычислить), то применяется sin.

 

Если используется прилежащий катет, то применяется cos.

 

Если в треугольнике даны оба острых угла, лучше на рисунке отметить только один угол, чтобы однозначно понять, где прилежащий и где противолежащий катеты.

 

Гипотенуза всегда в знаменателе.

 

 

 

 

 

 

 

 

 

 

Величины остальных углов можно найти в таблице или вычислить с калькулятора.

0,0(0 оценок)
Ответ:
Evo4ka111
Evo4ka111
07.07.2022 07:08

Внизу

Объяснение:

Подобны, Если пирамида пересечена плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделены на пропорциональные части;

2) многоугольник сечения подобен основанию;

3) площади основания и сечения относятся, как квадраты их расстояний от вершины.

Доказательство:

1) Так как \beta\||\alpha и они пересечены плоскостью грани ASB по прямым A_{1}B_{1} и AB , то A_{1}B_{1}||AB. Аналогично получим, что B_{1}C_{1}||BC, C_{1}D_{1}||CD и т. д. и B_{1}H_{1}||BH. На сторонах углов ASB, BSC, CSD, ... , BSH получим пропорциональные отрезки:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B}; \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C}; \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D}; \ldots  ; \frac{SB_{1}}{B_{1}B} = \frac{SH_{1}}{H_{1}H}.

Отсюда:

\frac{SA_{1}}{A_{1}A} = \frac{SB_{1}}{B_{1}B} = \frac{SC_{1}}{C_{1}C} = \frac{SD_{1}}{D_{1}D} =\ldots= \frac{SH_{1}}{H_{1}H}.

2) \triangle{A_{1}SB_{1}}\sim\triangle{ASB}; \triangle{B_{1}SC_{1}}\sim\triangle{BSC}; \triangle{C_{1}SD_{1}}\sim\triangle{CSD}

и т.д. Значит

\frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA}; \frac{B_{1}C_{1}}{BC} = \frac{SB_{1}}{SB}; \frac{C_{1}D_{1}}{CD} = \frac{SC_{1}}{SC} и т.д.

Но правые отношения в этих пропорциях равны между собой на основании только что доказанной первой теоремы, поэтому равны между собой и левые отношения:

\frac{A_{1}B_{1}}{AB} = \frac{B_{1}C_{1}}{BC} = \frac{C_{1}D_{1}}{CD} и т.д.

Т. е. стороны многоугольников A_{1}B_{1}C_{1}D_{1}E_{1} и ABCDE пропорциональны. Соответствующие углы этих многоугольников равны. Следовательно, A_{1}B_{1}C_{1}D_{1}E_{1} \sim ABCDE.

3) Пусть Q и Q' — площади основания и сечения. Имеем:

\frac{Q}{Q'} = \frac{A_{1}B_{1}^2}{AB^2};

Но \frac{A_{1}B_{1}}{AB} = \frac{SA_{1}}{SA} = \frac{SH_{1}}{SH} (по теореме 1), поэтому

\frac{Q}{Q'} = \frac{SH_{1}^2}{SH^2}.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота