Решите ! 1,концы отрезка ав лежат на двух параллельных плоскостях, расстояние между которыми равно d, причем d < ав. докажите, что проекции отрезка ав на эти плоскости равны. найдите эти проекции, если ав = 13 см, d = 5 см. 2. углы между равными отрезками ав и ас и плоскостью α, проходящей через точку а, равны соответственно 40° и 50°. сравните расстояния от точек в и с до плоскости α.
Расстоянием между параллельными плоскостями является расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. ⇒
ВС - перпендикуляр, и треугольник АВС - прямоугольный. Так как все точки одной из параллельных плоскостей находятся на одинаковом расстоянии от другой плоскости, то АА₁=ВС, и прямоугольные треугольники АВА₁ и АВС равны, т.к. у них общая гипотенуза и по равному катету. ⇒ АС=А₁В.
Определение: Проекция точки на плоскость -- это основание перпендикуляра, опущенного из этой точки на плоскость. Множество проекций точек прямой на плоскость образуют проекцию этой прямой.⇒ А₁В и АС- проекции отрезка АВ на каждую из плоскостей.
Стороны треугольника АВС составляют одну из Пифагоровых троек, где стороны прямоугольного треугольника - целые числа. В этой тройке больший катет равен 12 ( можно проверить по т. Пифагора).
Проекции отрезка АВ на параллельные плоскости равны. АС=А₁В=12
-----
2.
Расстояние от точки до плоскости -- это длина перпендикуляра , опущенного из этой точки на плоскость. Следовательно, углы ВВ₁А=СС₁А=90°В треугольниках АВВ₁ и АСС₁ гипотенузы равны по условию, равны и их острые углы: угол АВВ₁=90°- 40°=50°, угол АСС₁=90°-50°=40°. Следовательно, эти треугольники равны, и ВВ₁=АС₁. В треугольнике больше та сторона, что лежит против большего угла.
СС₁>АС₁⇒ СС₁>ВВ₁