Продолжим боковые стороны до точки пересечения T. (Выходит что BC средняя линия треугольника ATD) Проведем FO||AT ,OL||TD. Откуда подобны треугольники: ATD и FOL,AMD и FOD,AND и AOL. Откуда верны отношения: FO/4y=LO/6z=FL/AD FO/y=(FL+LD)/AD=OD/MD; FO/4y=(FL+LD)/4AD LO/2z=(FL+AF)/AD ; LO/6z=(FL+AF)/3AD (FL+LD)/4AD=FL/AD FL+LD=4FL LD=3FL (FL+AF)/3AD=FL/AD FL+AF=3FL AF=2FL OD/MD=(FL+LD)/(AF+FL+LD)=4FL/(6FL)=2/3 Проведем диагональ BD. Треугольники ABD и BDC имеют одинаковые высоты, равные высоте трапеции. То есть их площади относятся как основы трапеции: SBCD=SABD/2 (в сумме они дают площадь трапеции) 27cм^2=SABD+SABD/2=3SABD/2 SABD=18cм^2 Треугольники ABD и AMD имеют общую высоту,то их площади тоже относятся как их основы (AM и AB): SAMD=SABD/2=9cм^2 Ну и наконец треугольники AMD и AOD тоже имеют общую высоты,то их площади тоже относятся как основы (OD и MD). Из выше показанного:OD/MD=2/3 Откуда: SAOD=2SAMD/3=18/3=6cм^2 ответ:SAOD=6cм^2 Я не гарантирую ,что это самый простой путь решения. Я даже на 100 процентов уверен,что есть попроще.
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Проведем FO||AT ,OL||TD. Откуда подобны треугольники:
ATD и FOL,AMD и FOD,AND и AOL.
Откуда верны отношения:
FO/4y=LO/6z=FL/AD
FO/y=(FL+LD)/AD=OD/MD; FO/4y=(FL+LD)/4AD
LO/2z=(FL+AF)/AD ; LO/6z=(FL+AF)/3AD
(FL+LD)/4AD=FL/AD
FL+LD=4FL
LD=3FL
(FL+AF)/3AD=FL/AD
FL+AF=3FL
AF=2FL
OD/MD=(FL+LD)/(AF+FL+LD)=4FL/(6FL)=2/3
Проведем диагональ BD.
Треугольники ABD и BDC имеют одинаковые высоты, равные высоте трапеции. То есть их площади относятся как основы трапеции:
SBCD=SABD/2 (в сумме они дают площадь трапеции)
27cм^2=SABD+SABD/2=3SABD/2
SABD=18cм^2
Треугольники ABD и AMD имеют общую высоту,то их площади тоже относятся как их основы (AM и AB):
SAMD=SABD/2=9cм^2
Ну и наконец треугольники AMD и AOD тоже имеют общую высоты,то их площади тоже относятся как основы (OD и MD).
Из выше показанного:OD/MD=2/3
Откуда: SAOD=2SAMD/3=18/3=6cм^2
ответ:SAOD=6cм^2
Я не гарантирую ,что это самый простой путь решения.
Я даже на 100 процентов уверен,что есть попроще.