Я решил сохранить эту задачу. а) EFGH и FMHN - параллелограммы. У EFGH стороны параллельны диагоналям четырехугольника ABCD. Действительно, EF II AC как средняя линия ΔABC; GH II AC как средняя линия ΔABD; EH II BD как средняя линия ΔABD; FG II BD как средняя линия ΔBCD; То есть EF II GH II AC; FG II EH II BD; и EF = GH = AC/2; FG = EH = BD/2; У четырехугольника FMHN стороны параллельны сторонам ABCD. FM II AB как средняя линия ΔABC; NH II AB как средняя линия ΔABD; FN II DC как средняя линия ΔDBC; MH II DC как средняя линия ΔACD . У параллелограммов диагонали делятся пополам в точке пересечения. У этих параллелограммов, кроме EG и MN, есть общая диагональ FH. Поэтому все три отрезка EG, FH и MN пересекаются в одной точке и делятся в этой точке пополам. б) Если AC = BD; и они взаимно перпендикулярны, то EFGH - квадрат (смотри п. а)) Это означает, что отрезки EG и FH тоже равны между собой и взаимно перпендикулярны, как диагонали квадрата. (Кроме того, они составляют с диагоналями ABCD углы в 45°, в решении это не используется, но для общей картины полезно заметить). То есть, если между MN и FH угол α; то между EG и FH угол 90° - α; Площадь параллелограмма равна d1*d2*sin(α)/2; где d1 и d2 - диагонали параллелограмма, а α - угол между ними. С учетом EG = FH; отношение площадей параллелограммов EMGN и FMHN равно sin(90° - α)/sin(α) = ctg(α);
Объяснение:
Соединим радиусы с касательными и получим прямоугольные треугольники.
КО=ОМ=3
Рассмотрим ∆АОМ;
АО- гипотенуза
ОМ- катет против угла 30°
АО=2*ОМ=2*3=6
Теорема Пифагора
АМ=√(АО²-ОМ²)=√(6²-3²)=√(36-9)=√27=
=3√3
АМ=АК, свойство касательных проведенных из одной точки.
АК=3√3;
АО- биссектрисса угла <КАМ
<КАМ=2*<ОАМ=2*30°=60°
Рассмотрим ∆АВС.
Сумма острых углов прямоугольного треугольника равна 90°
<В=90°-<САВ=90°-60°=30°
AC=CK+KA=3+3√3
tg<B=AC/CB
tg30°=1/√3
1/√3=(3+3√3)/CB
CB=√3(3+3√3)=3√3+3*3=3√3+9
S(∆ABC)=1/2*AC*CB=1/2*(3√3+9)(3+3√3)=
=1/2(9√3+27+27+27√3)=1/2(54+36√3)=
=1/2*2(18√3+27)=18√3+27
ответ: 18√3+27
Задача 2)
Треугольник ∆АВС- равнобедренный
АВ=ВС, так как углы при основании равны, <А=<С по условию.
ЕС=СD, свойство касательных
ВЕ=ВК, свойство касательных
Так как треугольник равнобедренный, то
АК=АD=DC=CE.
AC=8x*2=16x
AB=BC=9x+8x=17x
Формула нахождения радиуса
r=AC/2√((2*AB-AC)/(2AB+AC))=
=16x/2√((2*17x-16x)/(2*17x+16x))=
=8x√((34x-16x)/(34x+16x))=8x√(18x/50x)=
=8x√(9/25)=8x*3/5=24x/5=4,8x
r=4,8x
r=24
4,8x=24
x=24/4,8
x=5
AB=17x=17*5=85
AC=16x=16*5=80
AD=AC/2=80/2=40
Теорема Пифагора
ВD=√(AB²-AD²)=√(85²-40²)=√(7225-1600)=
=√5625=75
S(∆ABC)=1/2*BD*AC=1/2*75*80=3000
ответ: 3000 ед²
а) EFGH и FMHN - параллелограммы.
У EFGH стороны параллельны диагоналям четырехугольника ABCD. Действительно, EF II AC как средняя линия ΔABC; GH II AC как средняя линия ΔABD; EH II BD как средняя линия ΔABD; FG II BD как средняя линия ΔBCD;
То есть EF II GH II AC; FG II EH II BD; и EF = GH = AC/2; FG = EH = BD/2;
У четырехугольника FMHN стороны параллельны сторонам ABCD. FM II AB как средняя линия ΔABC; NH II AB как средняя линия ΔABD; FN II DC как средняя линия ΔDBC; MH II DC как средняя линия ΔACD .
У параллелограммов диагонали делятся пополам в точке пересечения.
У этих параллелограммов, кроме EG и MN, есть общая диагональ FH. Поэтому все три отрезка EG, FH и MN пересекаются в одной точке и делятся в этой точке пополам.
б) Если AC = BD; и они взаимно перпендикулярны, то EFGH - квадрат (смотри п. а))
Это означает, что отрезки EG и FH тоже равны между собой и взаимно перпендикулярны, как диагонали квадрата.
(Кроме того, они составляют с диагоналями ABCD углы в 45°, в решении это не используется, но для общей картины полезно заметить).
То есть, если между MN и FH угол α; то между EG и FH угол 90° - α;
Площадь параллелограмма равна d1*d2*sin(α)/2; где d1 и d2 - диагонали параллелограмма, а α - угол между ними.
С учетом EG = FH; отношение площадей параллелограммов EMGN и FMHN равно sin(90° - α)/sin(α) = ctg(α);