Назовем наши прямые a и b (прямая а лежит выше прямой b), а секущую c. Соответственные углы назовем 1 и 2 (угол 1 образован пересечение прямых a и c, угол 2 образован пересечением прямых b и c),также возьмем во время доказательства угол 3, вертикальный углу 1. Доказательство. Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 - внутренние накрест лежащие при прямых a и b и секущей c. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны, что и требовалось доказать.
При сечении, параллельном основанию, боковые ребра и высота разделены на пропорциональные части. Боковые ребра разделены сечением пополам, следовательно и высота разделена пополам.
Площади основания и сечения, параллельного основанию, относятся как квадраты их расстояний от вершины. Треугольник основания находится на вдвое большем расстоянии от вершины, чем треугольник сечения, следовательно его площадь (S) вчетверо больше.
S сеч= S/4
Объем пирамиды равен трети произведения площади основания на высоту (V= S*H/3). Высота пирамиды вдвое больше высоты отсеченной пирамиды, следовательно, при вчетверо большем основании, её объем (V) в восемь раз больше. А объем усеченной пирамиды равен 7/8 от объема данной пирамиды.
V отсеч =(S/4 *H/2)/3 =V/8
V усеч = V -V отсеч =7/8 V
Если боковые ребра пирамиды равны, вершина пирамиды проецируется в центр описанной около основания окружности. Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Таким образом, высота пирамиды проецируется в середину гипотенузы треугольника основания и находится по теореме Пифагора.
В основании пирамиды лежит египетский треугольник со множителем 6 (3*6, 4*6), гипотенуза равна 5*6=30 (дм). Высота пирамиды составляет с ребром египетский треугольник со множителем 5 (3*5, 5*5) и равна 4*5=20 (дм).
H=20 дм
S= 18*24/2 (дм^2) (прямоугольный треугольник)
V= S*H/3 =18*24*20/2*3 (дм^3)
V усеч =7/8 V =7*18*24*20/8*2*3 =7*10*18 =1260 (дм^3)
Доказательство.
Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 - внутренние накрест лежащие при прямых a и b и секущей c. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны, что и требовалось доказать.
Площади основания и сечения, параллельного основанию, относятся как квадраты их расстояний от вершины. Треугольник основания находится на вдвое большем расстоянии от вершины, чем треугольник сечения, следовательно его площадь (S) вчетверо больше.
S сеч= S/4
Объем пирамиды равен трети произведения площади основания на высоту (V= S*H/3). Высота пирамиды вдвое больше высоты отсеченной пирамиды, следовательно, при вчетверо большем основании, её объем (V) в восемь раз больше. А объем усеченной пирамиды равен 7/8 от объема данной пирамиды.
V отсеч =(S/4 *H/2)/3 =V/8
V усеч = V -V отсеч =7/8 V
Если боковые ребра пирамиды равны, вершина пирамиды проецируется в центр описанной около основания окружности. Центром описанной около прямоугольного треугольника окружности является середина гипотенузы. Таким образом, высота пирамиды проецируется в середину гипотенузы треугольника основания и находится по теореме Пифагора.
В основании пирамиды лежит египетский треугольник со множителем 6 (3*6, 4*6), гипотенуза равна 5*6=30 (дм).
Высота пирамиды составляет с ребром египетский треугольник со множителем 5 (3*5, 5*5) и равна 4*5=20 (дм).
H=20 дм
S= 18*24/2 (дм^2) (прямоугольный треугольник)
V= S*H/3 =18*24*20/2*3 (дм^3)
V усеч =7/8 V =7*18*24*20/8*2*3 =7*10*18 =1260 (дм^3)