1) так как один из острых углов 60*, то второй острый угол =30* 2) обозначим катет(первый), лежащий против угла в 30* за х, тогда гипотенуза будет 2х ( по свойству катета, леж против угла в 30*) 3) По т Пифагора выразим катет, леж против угла в 60*, получаем: 4х^2-x^2=3x^2, катет (второй) =х√3 4) S=1/2 * катет * катет - это формула, подставим в неё все, что получили и знаем. Получаем: 288√3 / 3 = 1/2 * х^2 * √3 | * 6 : √3 2*288=3x^2 x^2=192 х(1) = 8√3, x(2) = -8√3 не подходит под условие задачи. нужный нам катет = 8√3 * √3 = 24
Дан ромб ABCD; AB=10см; AC+BD=28см.
Найти S(ABCD).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам. Пусть AC∩BD=O.
AO+BO = AC:2+BD:2 = (AC+BD):2 = 28см:2 = 14см
ΔABO - прямоугольный (∠O=90°). Пусть AO=x см, тогда BO=14-х см
По теореме Пифагора:
AO²+BO² = AB² ⇒ x²+(14-x)²=100²
2x²-28x+96 = 0; x²-14x+48 = 0; x(x-8)-6(x-8) = 0; (x-8)(x-6) = 0
x=6 или x=8
Если AO=6см, то ВО=8см, АС=12см, BD=16см
Если АО=8см, то ВО=6см, АС=16см, BD=12см
Получается ABCD это ромб с диагоналями, равными 16см и 12см.
Площадь ромба равна полупроизведению его диагоналей.
S(ABCD) = = 16·12:2 см² = 8·12 см² = 96см²
ответ: 96см².
2) обозначим катет(первый), лежащий против угла в 30* за х, тогда гипотенуза будет 2х ( по свойству катета, леж против угла в 30*)
3) По т Пифагора выразим катет, леж против угла в 60*, получаем:
4х^2-x^2=3x^2, катет (второй) =х√3
4) S=1/2 * катет * катет - это формула, подставим в неё все, что получили и знаем. Получаем:
288√3 / 3 = 1/2 * х^2 * √3 | * 6 : √3
2*288=3x^2
x^2=192
х(1) = 8√3,
x(2) = -8√3 не подходит под условие задачи.
нужный нам катет = 8√3 * √3 = 24