В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
aliFkaVAY
aliFkaVAY
24.02.2023 02:59 •  Геометрия

решите
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.


решите . . . . . . . . . . . . . . . . . . . . . . . . . .

Показать ответ
Ответ:
marianna123123
marianna123123
22.06.2022 10:44

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
0,0(0 оценок)
Ответ:
прждлшеджж
прждлшеджж
22.06.2022 10:44
В обоих случаях площадь ищется по формуле S= 0.5*P*r(r-радиус вписанной окружности) или же для правильного шестиугольника S=3*a*r.
Понятно, что при наличии описанного правильного шестиугольника мы ищем площадь сразу через эту формулу, но если мы имеем дело с правильным шестиугольником, вписанным в окружность, то нам необходимо найти радиус вписанной окружности в этом же шестиугольнике.
Ищется она по формуле: r=R*cos 180/n, где  - количество сторон данного правильного многоугольника.
Тогда формула принимает вид r=R*cos 30=R*√3/2
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота