Пошаговое объяснение:Нам известен отрезок на который опирается известный угол. Поэтому легко построить окружность описанную около искомого треугольника (для этого можно , например, на луче заданного угла взять точку из которой засечь на другом луче точку удаленную от первой на расстояние равное данному отрезку, а потом около треугольника описать окружность. Последнее построение -стандартное). Биссектриса делит дугу на которую опирается отрезок пополам. Середина дуги находится как точка пересечения перпендикуляра из середины отрезка с окружностью. Пусть середина дуги точка Е. Строим точку Д делящую отрезок на два заданных. Проводим ЕД до пересечения с окружностью. Точка пересечения - третья вершина искомого треугольника.
Пошаговое объяснение:Нам известен отрезок на который опирается известный угол. Поэтому легко построить окружность описанную около искомого треугольника (для этого можно , например, на луче заданного угла взять точку из которой засечь на другом луче точку удаленную от первой на расстояние равное данному отрезку, а потом около треугольника описать окружность. Последнее построение -стандартное). Биссектриса делит дугу на которую опирается отрезок пополам. Середина дуги находится как точка пересечения перпендикуляра из середины отрезка с окружностью. Пусть середина дуги точка Е. Строим точку Д делящую отрезок на два заданных. Проводим ЕД до пересечения с окружностью. Точка пересечения - третья вершина искомого треугольника.
ответ: 136°
Объяснение:
Пусть L - точка пересечения биссектрисы угла В с окружностью, описанной около треугольника АВС.
Так как вписанные углы ABL и CBL равны, то равны и дуги AL и CL, а значит равны и хорды, их стягивающие:
AL = CL.
Так как точка L равноудалена от концов отрезка АС, то она лежит на серединном перпендикуляре к отрезку АС. То есть
точка L совпадает с точкой D.
Тогда четырехугольник ABCD вписан в окружность. Значит суммы противоположных углов в нем равны 180°.
∠ADC = 180° - ∠ABC = 180° - 44° = 136°