Решите 30 во вложении))
два перпендикулярных отрезка km и ln пересекаются в общей серединной точке p.
какой величины∡ n и ∡ k, если ∡ l = 85° и ∡ m = 5°?
1. отрезки делятся пополам, значит, kp =
= lp, ∡
= ∡ mpl, так как прямые перпендикулярны и оба угла равны °.
по первому признаку равенства треугольник kpn равен треугольнику mpl.
2. в равных треугольниках соответствующие углы равны.
в этих треугольниках соответствующие ∡
и ∡ m, ∡ и∡ l.
∡ k = °;
∡ n = °.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
ответ:
1. аа₁ - биссектриса,
вв₁ - медиана,
сс₁ - высота.
2. ав = св,
∠аве = ∠све,
ве - общая сторона.
δаве = δсве по 1 признаку (по двум сторонам и углу между ними).
3. ∠вас = 180° - ∠1 по свойству смежных углов.
∠вас = 180° - 110° = 70°.
в равнобедренном треугольнике углы при основании равны, значит
∠вса = вас = 70°
∠bdc = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ом = ок по условию,
∠dmo = ∠bko по условию,
∠dom = ∠bok как вертикальные, значит
δdmo = δbko по стороне и двум прилежащим к ней углам.
в равных треугольниках напротив равных сторон лежат равные углы, значит ∠mdo = ∠kbo, а так же od = ob.
треугольник dob равнобедренный, значит углы при основании равны:
∠odb = ∠obd.
∠mdb = ∠mdo + ∠odb
∠kbd = ∠kbo + ∠obd, а так как ∠mdo = ∠kbo и ∠odb = ∠obd, то
∠mdb = ∠kbd, т.е. ∠d = ∠b
объяснение:
это ответы на этот сор