Треугольник был бы равнобедренным, если бы был прямоугольным. А он таковым не является. Решение:
пусть угол А = 45 градусов, АВ = 10, АС = 12. Опустим высоту из вершины В, тогда треугольник АВН - прямоугольный и равнобедренный, значит угол АВН равен 90-45=45 градусов, и два квадрата катета (в данном случае это еще и высота треугольника АВС) в сумме дают 10^2=100, то есть 2ВН^2=100 => BH^2=50 => BH = корень из 50, а далее по формуле - полупроизведение высоты (корень 50) и основания (12), то есть
(корень 50 *12)/2= 6 корней из 50 [ШЕСТЬ корней из ПЯТИДЕСЯТИ]
Из условия следует, что треугольник прямоугольный, далее, рассмотрим треугольник ACD. Все углы у него известны, а именно
^CAD = 15 (по условию)
^ACD = 45 (СD - биссектриса прямого угла)
^ADC = 120 (180-15-45)
и одна сторона тоже
АС = sqrt(3).
Следовательно, треугольник полностью определён и не представляет сложностей найти все другие его элементы.
Длину стороны AD проще всего найти из теоремы синусов
AD/sin(^ACD)=AC/sin(^ADC), откуда
AD =AC*sin(^ACD)/sin(^ADC), подставим исходные данные
AD = sqrt(3)*sin(45)/sin(180-60)=(sqrt(3)*sqrt(2)/2)/(sqrt(3)/2)=sqrt(2)
Треугольник был бы равнобедренным, если бы был прямоугольным. А он таковым не является. Решение:
пусть угол А = 45 градусов, АВ = 10, АС = 12. Опустим высоту из вершины В, тогда треугольник АВН - прямоугольный и равнобедренный, значит угол АВН равен 90-45=45 градусов, и два квадрата катета (в данном случае это еще и высота треугольника АВС) в сумме дают 10^2=100, то есть 2ВН^2=100 => BH^2=50 => BH = корень из 50, а далее по формуле - полупроизведение высоты (корень 50) и основания (12), то есть
(корень 50 *12)/2= 6 корней из 50 [ШЕСТЬ корней из ПЯТИДЕСЯТИ]