1. Средняя линия - полусумма оснований: 2+x/2=10; 2+х=20 х=18 (см). 2. Медиана, проведенная к гипотенузе в два раза меньше ее, следовательно c = 2m = 2*10=20 (см). Раз прямой угол поделен в отношении 2:1, то это 30 и 60 градусов. Один из треугольников получится равносторонним, т.е. один из катетов = 10 см, а т.к. он лежит против меньшего угла, то он и является меньшим. 3. Если в трапецию вписана окружность, то суммы противоположных сторон равны, следовательно, a+b+c+d = 50; с+d = 25; 15+х=25; х = 10 (см) Это боковая сторона прям. трапеции, значит она равна высоте, радиус окружности в два раза меньше высота, т.е. равен 5 см.
2+x/2=10;
2+х=20
х=18 (см).
2. Медиана, проведенная к гипотенузе в два раза меньше ее, следовательно c = 2m = 2*10=20 (см). Раз прямой угол поделен в отношении 2:1, то это 30 и 60 градусов. Один из треугольников получится равносторонним, т.е. один из катетов = 10 см, а т.к. он лежит против меньшего угла, то он и является меньшим.
3. Если в трапецию вписана окружность, то суммы противоположных сторон равны, следовательно, a+b+c+d = 50; с+d = 25; 15+х=25; х = 10 (см)
Это боковая сторона прям. трапеции, значит она равна высоте, радиус окружности в два раза меньше высота, т.е. равен 5 см.
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².