Долго не вдаваясь в объяснения - имеем отношения отрезков, начиная с вершины - 1:2:3 (первый отрезок- одна часть, второй состоит из двух- две части, и третий -сторона начального треугольника-состоит из трех - три части) Соответственно и основания трех треугольников будут относиться как 1:2:3 (по т. Фалеса)
если второе основание =2см ( а он состоит из 2-х частей) , тогда одна часть =1см, соответственно два других основания равны 1 и 3 см. P.S. специально не решал геометрически, т.к. это наиболее доступное решение.
2) Если периметр ромба равен 32 см, то сторона ромба равна 32 : 4 = 8 см. Высота ромба на 1,7 см меньше чем сторона значит H = 8 - 1, 7 = 6,3 см Площадь ромба равна произведению стороны ромба и его высоты, то есть S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне. С одной стороны площадь параллелограмма равна S = 16 * 5,9 Но с другой стороны площадь этого параллелограмма можно вычислить и так S = 4 * h Приравняем правые части этих равенств 4 * h = 16 * 5,9 h = 4 * 5,9 = 23,6 см Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK S = AD * BK = 7 * 3 = 21 см²
Соответственно и основания трех треугольников будут относиться как 1:2:3 (по т. Фалеса)
если второе основание =2см ( а он состоит из 2-х частей) , тогда одна часть =1см, соответственно два других основания равны 1 и 3 см.
P.S. специально не решал геометрически, т.к. это наиболее доступное решение.
Высота ромба на 1,7 см меньше чем сторона значит
H = 8 - 1, 7 = 6,3 см
Площадь ромба равна произведению стороны ромба и его высоты, то есть
S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне.
С одной стороны площадь параллелограмма равна
S = 16 * 5,9
Но с другой стороны площадь этого параллелограмма можно вычислить и так
S = 4 * h
Приравняем правые части этих равенств
4 * h = 16 * 5,9
h = 4 * 5,9 = 23,6 см
Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK
S = AD * BK = 7 * 3 = 21 см²