AB = CD => AB || CD, |AB|=|CD|соеденим точки A и C, B и DПолучился параллелограмм так как у четырехугольника две противоположные стороны равны и параллельны. По св-ву параллелограмма, диагонали паралл. точкой пересеч-я делятся пополам. Тогда так как AD, BC - диагонали, то середины этих отрезков совпадают в точке их пересечения.Обратное утв-ие:Если середины отрезков AD и ВС совпадают, то вектор АВ= вектору СDДок-во: Достроим до 4-угольника ABCD, AD, BC-диагонали. Тогда У четырехугольника диагонали точкой пересечения делятся пополам. Следовательно это параллелограмм.Тогда AB = CD так как их длины равны, как противоположные стороны параллелограмма, и направлены они параллельно в одну сторону.
Допустим, что стороны данного прямоугольника равны х и у. Тогда условие задачи можно записать в виде двух уравнений: 2 * (х + у) = 42, х * у = 110. Из первого уравнения получаем: х + у = 21, у = 21 - х. Подставим это значение у во второе уравнение: х * (21 - х) = 110, 21 * х - х² = 110, х² - 21 * х + 110 = 0. Дискриминант данного квадратного уравнения равен: (-21)² - 4 * 1 * 110 = 441 - 440 = 1. Значит, уравнение имеет следующие решения: х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11. Значит у будет равен: у = 21 - 10 = 11 и у = 21 - 11 = 10. ответ: 11 см и 10 см.
2 * (х + у) = 42,
х * у = 110.
Из первого уравнения получаем:
х + у = 21,
у = 21 - х.
Подставим это значение у во второе уравнение:
х * (21 - х) = 110,
21 * х - х² = 110,
х² - 21 * х + 110 = 0.
Дискриминант данного квадратного уравнения равен:
(-21)² - 4 * 1 * 110 = 441 - 440 = 1.
Значит, уравнение имеет следующие решения:
х = (21 - 1)/2 = 10 и х = (21 + 1)/2 = 11.
Значит у будет равен:
у = 21 - 10 = 11 и у = 21 - 11 = 10.
ответ: 11 см и 10 см.
меньшая - 10 см