Дано: ABCA1B1C1 - правильная треугольная призvf AB=8см AA1=6см Найти S сеч. -? Решение: 1)Построим сечение: (B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина)) Проводим B1A в (AA1B1B) Проводим АС1 в (АА1С1С) В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1 2)по теореме Пифагора из треугольника AA1B1 - прямоугольного: B1A^2 = AA1^2+A1B1^2 отсюда: B1A^2= 36+64=100 B1A=10 3) по формуле: S=√p(p-a)(p-b)(p-c) S=√14*4*4*6=8√21 ответ:8√21 или можно найти высоту АН сечения, она равна 2√21 и потом находим S=a*h/2 S=8*2√21/2=8√21
1.Сумма длин средних линий равна половине периметра этого треугольника-22см. 2.∠A =( 360°/(2+7+6+3)) *3 =(360°/18)*3 =20°*3 =60°. ∠B =20°*7=140° ,∠C =20°*6 =120°,∠D =20°*3 =60°. 3.Находим гипотенузу:9^2+40^2=81+1600=корень из 1681=41^2. Складываем гипотенузы и катеты: 9^2+41^2+40^2=90^2см2 4.Раздели отрезок на 8 равных частей и поставь в точку. 5.пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰ ответ: 60⁰,120⁰,120⁰,60⁰.
ABCA1B1C1 - правильная треугольная призvf
AB=8см
AA1=6см
Найти S сеч. -?
Решение:
1)Построим сечение:
(B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина))
Проводим B1A в (AA1B1B)
Проводим АС1 в (АА1С1С)
В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1
2)по теореме Пифагора из треугольника AA1B1 - прямоугольного:
B1A^2 = AA1^2+A1B1^2
отсюда:
B1A^2= 36+64=100
B1A=10
3) по формуле:
S=√p(p-a)(p-b)(p-c)
S=√14*4*4*6=8√21
ответ:8√21
или можно найти высоту АН сечения, она равна 2√21
и потом находим S=a*h/2
S=8*2√21/2=8√21
2.∠A =( 360°/(2+7+6+3)) *3 =(360°/18)*3 =20°*3 =60°. ∠B =20°*7=140° ,∠C =20°*6 =120°,∠D =20°*3 =60°.
3.Находим гипотенузу:9^2+40^2=81+1600=корень из 1681=41^2. Складываем гипотенузы и катеты: 9^2+41^2+40^2=90^2см2
4.Раздели отрезок на 8 равных частей и поставь в точку.
5.пусть дана равнобедренная трапеция ABCD. AB=CD, BC и AD - основания. Проведем диагональ АС. Тогда по условию угол АСD = 90⁰ . Так как ВС=АВ=СD ( по условию) , то треугольник АВС - равнобедренный. угол ВАС=ВСА. Пусть угол ВСА=ВАС=х. Рассмотрим параллельные прямые ВС и АD и секущую АС. По свойсвам секущей к параллельным прямым угол ВСА=САD=х. Теперь рассмотрим ΔАВС. В нем угол АВС равен 180⁰-2х. В трапеции угол ВСD = х+90⁰. Тогда получаем по свойствам трапеции равенство: 180⁰-2х=х+90⁰ ⇒ 90⁰ =3х ⇒ х=30⁰. То есть углы ВАС, ВСА, САD равны по 30⁰. Найдем углы трапеции: угол ВАD=2х=СDА=60⁰ ; угол АВС=180-2х=ВСD= 120⁰ ответ: 60⁰,120⁰,120⁰,60⁰.