Решите хотя бы 2 задачи ❤️❤️❤️
Дано: АВСД-прямоугольник
АВ=7см
АС=25см
Найти:Sавсд
(задача 1)
Дано:АВСД-параллелограм
АВ=8см
АД=10см
ВК и ВМ - высоты ,
ВК=5см
Найти:ВМ
(задача 2)
Дано:АВСД-квадрат
MNKP-прямоугольник
Sавсд=Smnkp
MN=4см
МР > МN на 5 см
Найти:АВ
(задача 3)
Рассмотрим треугольник ADB:сторона AD=стороне BD , поэтому треугольник ADB-равнобедренный. Угол BDA+угол ABD + угол BAD=180градусов.Поэтому угол BAD+угол ABD=180-90( потому что высота)=90градусов. Угол BAD=ABD(потому что при основании равнобедренного треугольника). Угол BAD=90/2=45 градусов.Угол B=ABD*2(потому что биссектриса)=45*2=90 градусов. ответ:угол A=45 градусов, угол C=45 градусов, угол B=90градусов.
AB=1/2AD, AD=2AB
Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим угол А:
<A=90-<ADB=90-30=60°
Угол D в трапеции ABCD равен:
<D=30+30=60°
Углы при основании трапеции равны, значит, она равнобедренная, и АВ=CD.
Рассмотрим треугольник BCD. <CBD=<ADB как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей BD. <CDB=30°, значит треугольник BCD равнобедренный, поскольку углы при его основании BD равны.
ВС=CD. Но CD=AB, значит ВС=CD=AB
Таким образом мы можем принять АВ, ВС, CD за х, а AD - за 2х (т.к. AD=2AB см. выше). Зная периметр, запишем:
AB+BC+CD+AD=P
x+x+x+2x=60
5x=60x=12
AD=2*12=24 см
2. Рассмотрим прямоугольный треуг-ик АЕВ. Он равнобедренный по условию (диагональ ВЕ равна стороне АЕ, она будет равна и стороне ВС). В равнобедренном треуг-ке углы при основании равны. Найдем их:
<A=<ABE=(180-<AEB):2=(180-90):2=45°
Поскольку противоположные углы параллелограмма равны, то
<C=<A=45°
<ABC=<AEC=90+<ABE=90+45=135°