Проведем AC и AD. Получили три треугольника, в каждом из котором искомый угол. Дан правильный пятиугольник. Значит все углы пятиугольника равны (ABC BCD CDE и тд). Сумма углов пятиугольника равна 180(n-2)=540 , а каждый из его углов 540/5=108 градусов. Теперь про треугольники, которые мы отсекли. Они равнобедренные, но для задачи будем использовать лишь ABC и DAE. Равнобедренные они так как две стороны каждого из них являются сторонами пятиугольника, правильного по условию. значит его углы при основании равны и равны (180-108)/2=36 градусов. Теперь рассмотрим угол CAD=EAB-BAC-DAE=108-36-36=36градусов. Таким образом мы доказали, что углы BAC=CAD=DAE
1) Биссектриса угла прямоугольника делит угол в 90° пополам, то есть по 45°. Поэтому она отсекает на большей стороне отрезок, равный меньшей стороне прямоугольника. Обозначим стороны прямоугольника как 3х и 4х. Сумма двух сторон равна половине периметра, то есть: 3х+4х = 42/2 = 21 см. 7х = 21 см. х = 21/7 = 3 см. ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α. Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2). Угол между боковой стороной и высотой равен 90-α. По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2. ответ: α = 2*20 = 40°.
Теперь про треугольники, которые мы отсекли. Они равнобедренные, но для задачи будем использовать лишь ABC и DAE. Равнобедренные они так как две стороны каждого из них являются сторонами пятиугольника, правильного по условию. значит его углы при основании равны и равны (180-108)/2=36 градусов. Теперь рассмотрим угол CAD=EAB-BAC-DAE=108-36-36=36градусов. Таким образом мы доказали, что углы BAC=CAD=DAE
Обозначим стороны прямоугольника как 3х и 4х.
Сумма двух сторон равна половине периметра, то есть:
3х+4х = 42/2 = 21 см.
7х = 21 см.
х = 21/7 = 3 см.
ответ: меньшая сторона равна 3х = 3*3 = 9 см.
2) Обозначим острый угол параллелограмма α.
Тупой угол равен 180-α, половина его равна (180-α)/2 = 90-(α/2).
Угол между боковой стороной и высотой равен 90-α.
По заданию угол в 20° равен (90-(α/2)) - (90-α) = α - (α/2) = α/2.
ответ: α = 2*20 = 40°.