33,9(м^3).
Объяснение:
Дано:
R(2)=2R(1)
S(осев.сеч.)=36м²
S(бок.пов.)=S(осн.1)+S(осн.2)
V(усеч. кон.)= ?
S(осн.2)=pi*R(2)²=pi*(2*R(1))²=4pi*R(1)²
S(осн.1)=pi*R(1)²
S(бок.пов.)=4pi*R(1)²+pi*R(1)²=5pi*R(1)²
5pi*R(1)²=36
R(1)²=36/5pi
R(1)=√36/5pi=6/√5pi
S(бок.пов.усеч.кон.)=S(бок.пов.2)-S(бок.пов.1)=
=1/2*C(2)L(2)-1/2*C(1)L(1)=
=1/2*2pi*2R(1)*2L(1)-1/2*2pi*R(1)*L(1)=
=4*pi*R(1)*L(1)-pi*R(1)*L(1)=3pi*R(1)*L(1)=36
Осевые сечения большого и малого конусов
являются подобными треугольниками .
По условию коэффициент подобия равен 2.
⇒ L(2)/L(1)=2
R(2)/R(1)=2
h(2)/h(1)=2
L(1)=36/3*pi*R(1)*L(1)
L(1)=12/pi*R(1)
L(1)=12/pi/R(1)=12*√5pi/pi*6=2*√5pi/pi
V(усеч.кон.)=V(кон.2)-V(кон.1)=
=1/3S(осн.2)*h(2)-1/3S(осн.1)*h(1)=
1/3*pi*(2R(1))²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*4R(1)²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*R(1)²(8h(1)-h(1))=1/3*pi*R(1)²*7h(1)
Высота конуса перпендикулярна основанию.
Выcота конуса,образующая и радиус основания
образуют прямоугольный треугольник ⇒ по теореме
Пифагора: h(1)²=L(1)²-R(1)²
L(1)²=(2*√5pi/pi)²=4*5*pi/pi²=20/pi
h(1)²=L(1)²-R(1)²
h(1)²=20/pi-36/5pi=100/5pi-36/5pi=64/5pi
h(1)=√64/5pi=8/√5pi
V(усеч.кон)=1/3*pi*R(1)² *7*h(1)=
=1/3pi*36/5pi*7*8/√5pi=134,4/(5pi)=
=33,9(м^3).
Цилиндр.
ОО1 || ABCD
S ABCD = 48 см²
ВС : АВ = 2 : 3
ОК = 4 см
OO1 (h) > OB (OC, R)
OB (OC, R) - ?
Так как высота ОО1 > радиуса ОВ (ОС), по условию => сечение, которое параллельно оси - прямоугольник.
Прямоугольник - геометрическая фигура, у которой все углы прямые.
=> ABCD - прямоугольник.
Найдём стороны прямоугольника ABCD, с уравнения:
Пусть х - часть стороны, 2х - ВС, 3х - АВ.
S ABCD = ab = 48, где а, b - стороны прямоугольника.
2х * 3х = 48
х² = 8
х(1) = 2√2
x(2) = -2√2
Но так как единицы измерения не могут быть отрицательными => х = 2√2
2√2 - часть стороны
=> ВС = 2√2 * 2 = 4√2 см
=> AB = 2√2 * 3 = 6√2 см
OK = 4 см, по условию.
Так как ОК - расстояние от ОО1 до ABCD => OK - высота.
△СОВ - равнобедренный, так как СО = ОВ (они радиусы)
Высота, проведённая из вершины равнобедренного треугольника к основанию равнобедренного треугольника, является его медианой и высотой.
=> СК = КВ = ВС/2 = 4√2/2 = 2√2 см, так как ОК - медиана.
△ОКВ и △ОКС - прямоугольные, так как ОК - высота.
Рассмотрим △ОКВ:
Найдём ОВ (R), по теореме Пифагора: (c = √(a² + b²), где с - гипотенуза; а, b - катеты)
ОВ = √(OK² + KB²) = √(4² + (2√2)²) = √(16 + 4 * 2) = √24 = 2√6 см
Итак, ОВ = R = OC = 2√6 см
33,9(м^3).
Объяснение:
Дано:
R(2)=2R(1)
S(осев.сеч.)=36м²
S(бок.пов.)=S(осн.1)+S(осн.2)
V(усеч. кон.)= ?
S(осн.2)=pi*R(2)²=pi*(2*R(1))²=4pi*R(1)²
S(осн.1)=pi*R(1)²
S(бок.пов.)=4pi*R(1)²+pi*R(1)²=5pi*R(1)²
5pi*R(1)²=36
R(1)²=36/5pi
R(1)=√36/5pi=6/√5pi
S(бок.пов.усеч.кон.)=S(бок.пов.2)-S(бок.пов.1)=
=1/2*C(2)L(2)-1/2*C(1)L(1)=
=1/2*2pi*2R(1)*2L(1)-1/2*2pi*R(1)*L(1)=
=4*pi*R(1)*L(1)-pi*R(1)*L(1)=3pi*R(1)*L(1)=36
Осевые сечения большого и малого конусов
являются подобными треугольниками .
По условию коэффициент подобия равен 2.
⇒ L(2)/L(1)=2
R(2)/R(1)=2
h(2)/h(1)=2
L(1)=36/3*pi*R(1)*L(1)
L(1)=12/pi*R(1)
L(1)=12/pi/R(1)=12*√5pi/pi*6=2*√5pi/pi
V(усеч.кон.)=V(кон.2)-V(кон.1)=
=1/3S(осн.2)*h(2)-1/3S(осн.1)*h(1)=
1/3*pi*(2R(1))²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*4R(1)²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*R(1)²(8h(1)-h(1))=1/3*pi*R(1)²*7h(1)
Высота конуса перпендикулярна основанию.
Выcота конуса,образующая и радиус основания
образуют прямоугольный треугольник ⇒ по теореме
Пифагора: h(1)²=L(1)²-R(1)²
L(1)²=(2*√5pi/pi)²=4*5*pi/pi²=20/pi
h(1)²=L(1)²-R(1)²
h(1)²=20/pi-36/5pi=100/5pi-36/5pi=64/5pi
h(1)=√64/5pi=8/√5pi
V(усеч.кон)=1/3*pi*R(1)² *7*h(1)=
=1/3pi*36/5pi*7*8/√5pi=134,4/(5pi)=
=33,9(м^3).
Цилиндр.
ОО1 || ABCD
S ABCD = 48 см²
ВС : АВ = 2 : 3
ОК = 4 см
OO1 (h) > OB (OC, R)
Найти:OB (OC, R) - ?
Решение:Так как высота ОО1 > радиуса ОВ (ОС), по условию => сечение, которое параллельно оси - прямоугольник.
Прямоугольник - геометрическая фигура, у которой все углы прямые.
=> ABCD - прямоугольник.
Найдём стороны прямоугольника ABCD, с уравнения:
Пусть х - часть стороны, 2х - ВС, 3х - АВ.
S ABCD = ab = 48, где а, b - стороны прямоугольника.
2х * 3х = 48
х² = 8
х(1) = 2√2
x(2) = -2√2
Но так как единицы измерения не могут быть отрицательными => х = 2√2
2√2 - часть стороны
=> ВС = 2√2 * 2 = 4√2 см
=> AB = 2√2 * 3 = 6√2 см
OK = 4 см, по условию.
Так как ОК - расстояние от ОО1 до ABCD => OK - высота.
△СОВ - равнобедренный, так как СО = ОВ (они радиусы)
Высота, проведённая из вершины равнобедренного треугольника к основанию равнобедренного треугольника, является его медианой и высотой.
=> СК = КВ = ВС/2 = 4√2/2 = 2√2 см, так как ОК - медиана.
△ОКВ и △ОКС - прямоугольные, так как ОК - высота.
Рассмотрим △ОКВ:
Найдём ОВ (R), по теореме Пифагора: (c = √(a² + b²), где с - гипотенуза; а, b - катеты)
ОВ = √(OK² + KB²) = √(4² + (2√2)²) = √(16 + 4 * 2) = √24 = 2√6 см
Итак, ОВ = R = OC = 2√6 см
ответ: 2√6 см.