ответ: вектор AO₁ равен сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.
Объяснение:
Решение.
Пусть дан параллелепипед ABCDA₁B₁C₁D₁ , где O₁ - точка пересечения диагоналей верхнего основания A₁B₁C₁D₁. Чтобы разложить вектор AO₁ по векторам AD, AB, AA₁ построим О – точку пересечения диагоналей нижнего основания ABCD. Она является проекцией точки O₁ на нижнее основание. Вектор АО равен вектору ½ ∙ АС, а вектор АС равен сумме векторов AB и АD по правилу параллелограмма, тогда вектор АО равен вектору ½ ∙ (AB + АD). В плоскости диагонального сечения АА₁С₁С вектор AO₁ равен сумме векторов АО и ОО₁, но ОО₁ = AA₁. Получаем, что
вектор AO₁ равен сумме векторов ½ ∙ (AB + АD) и AA₁ или сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.
ответ: вектор AO₁ равен сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.
1) угол M= углу R(потому что в параллелограмме противолежащие углы равны)=140/2=70 градусов
угол P= углу N= (180-70)= 110
2) так как сторона AD равна стороне DC данный параллелограмм является ромбом. а в ромбе диагонали это и биссектрисы
↓
угол ADC= углу ABC=ODC*2= 60*2=120 градусов
↓
угол BAD= углу DCB=180-ADC=180-120=60 градусов
углы найдены)
3)Примем за x сторону KF, тогда:
KM=FL=2x. KF=ML=x.
Составим и решим уравнение:
KM+FL+KF+ML=36
2x+2x+x+x=36
6x=36
x=6
KM=FL=2*6=12
KF=ML=6
4)Решаем аналогично 3 задаче.
так как сторона AB относится к стороне BC как один к двум.
значит: AB=CD=x, а BC=AD=2x
Составим уравнение и решим его:
2x+2x+x+x=36
6x=36
x=6
AB=CD=6. BC=AD=2*6=12
ответ: вектор AO₁ равен сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.
Объяснение:
Решение.
Пусть дан параллелепипед ABCDA₁B₁C₁D₁ , где O₁ - точка пересечения диагоналей верхнего основания A₁B₁C₁D₁. Чтобы разложить вектор AO₁ по векторам AD, AB, AA₁ построим О – точку пересечения диагоналей нижнего основания ABCD. Она является проекцией точки O₁ на нижнее основание. Вектор АО равен вектору ½ ∙ АС, а вектор АС равен сумме векторов AB и АD по правилу параллелограмма, тогда вектор АО равен вектору ½ ∙ (AB + АD). В плоскости диагонального сечения АА₁С₁С вектор AO₁ равен сумме векторов АО и ОО₁, но ОО₁ = AA₁. Получаем, что
вектор AO₁ равен сумме векторов ½ ∙ (AB + АD) и AA₁ или сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.
ответ: вектор AO₁ равен сумме векторов ½ ∙ AB, ½ ∙ АD и AA₁.