Рассмотрим параллелограмм АВСД (см. рисунок) стороны которого: АВ=32 см, ВС=40 см. Из угла АВС проведем перпендикуляр ВЕ и расстояние между вершинам тупых углов ВД Рассмотрим треугольник АВЕ: Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи) По теореме Пифагора найдем второй катет (высоту): ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см. Теперь рассмотрим треугольник BДE: ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов По теореме Пифагора найдем ВД: ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см. ответ: расстояние между вершинами тупых углов равно 8√21 см
Найдите углы ромба ABCD, если его диагонали AC И BD равны 4корень из 3 метров и 4 метра. (Для ясности нужно добавить фразу "О - точка пересечения диагоналей. ").
Решение: Пусть угол BAO=альфа. Диагонали ромба делят его углы ПОПОЛАМ, значит, угол DAO= углу BAO =альфа. Диагонали ромба взаимно ПЕРПЕНДИКУЛЯРНЫ, И ТОЧКОЙ ПЕРЕСЕЧЕНИЯ ДЕЛЯТСЯ ПОПОЛАМ, следовательно в прямоугольном треугольнике ABO катет AO равен 2*(корень из 3) метрАМ, а катет ВО равен 2 метрАМ. Поэтому тангенс альфа=1/(корень из 3), (Здесь нужно добавить, значит альфа равно 30 градусам) , а угол BAD=2*30= 60 градусам, угол ADC= (180 градусов минус угол ВАD)=120 градусам.
ответ 60 и 120 градусов (или Пи/3 и 2*Пи/3 радиан) .
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см
Объяснение:
Найдите углы ромба ABCD, если его диагонали AC И BD равны 4корень из 3 метров и 4 метра. (Для ясности нужно добавить фразу "О - точка пересечения диагоналей. ").
Решение: Пусть угол BAO=альфа. Диагонали ромба делят его углы ПОПОЛАМ, значит, угол DAO= углу BAO =альфа. Диагонали ромба взаимно ПЕРПЕНДИКУЛЯРНЫ, И ТОЧКОЙ ПЕРЕСЕЧЕНИЯ ДЕЛЯТСЯ ПОПОЛАМ, следовательно в прямоугольном треугольнике ABO катет AO равен 2*(корень из 3) метрАМ, а катет ВО равен 2 метрАМ. Поэтому тангенс альфа=1/(корень из 3), (Здесь нужно добавить, значит альфа равно 30 градусам) , а угол BAD=2*30= 60 градусам, угол ADC= (180 градусов минус угол ВАD)=120 градусам.
ответ 60 и 120 градусов (или Пи/3 и 2*Пи/3 радиан) .