Если на одинаковом расстоянии от прямой что на одной и той же плоскости, значит самая короткая расстояние будет перпендикуляр отсюда следует AC=BD так как AC и BD перпендикулярны линии a и на одной плоскости значит они параллельны. точки A,B,C,D находятся на одной плоскости и образуют четырехугольник с попарно параллельными сторонами, где два угла 90 градусов, значит четырехугольник это прямоугольник значит AB=CD получим что треугольники ACB и ADC ровны(AC общий, AB=CD и угол между ровными сторонами 90 градусов) Отсюда выходит что угол ADC=CBA=25 градусов а угол ACB из треугольника где один угол 90(угол A) градусов а второй CBA=25 Отсюда следует что ACB=180-90-25 =65градусов
В треугольнике АВС известны длины сторон АВ =8 и АС = 64.
Точка О центр окружности, описанной около треугольника АВС. Прямая ВD перпендикулярная прямой АО , пересекает сторону АС в точке D. Найдите СD.
–––––––––––––––––
Продлим ВD до пересечения с окружностью в точке М.
Хорда МВ перпендикулярна радиусу ОА ( по условию) и при пересечении с ним делится пополам ( свойство).
Тогда радиус ОА делит угол ВОМ пополам. Дуги АМ и АВ, на которые опираются равные центральные углы МОА и ВОА, также равны.
Отсюда следует равенство углов АВМ и ВСА - опираются на равные дуги.
В треугольниках АВС и АВD угол ВАС общий, ∠АВD=∠ВСА ⇒
∆ АВС ~ ∆ АВD по 1-му признаку подобия. Из подобия следует отношение:
АВ:АС=АD:АВ
АВ²=АD•AC
64=AD•64⇒ AD=1
CD=64-1=63 (ед. длины)
отсюда следует AC=BD
так как AC и BD перпендикулярны линии a и на одной плоскости значит они параллельны.
точки A,B,C,D находятся на одной плоскости и образуют четырехугольник с попарно параллельными сторонами, где два угла 90 градусов, значит четырехугольник это прямоугольник
значит AB=CD получим что треугольники ACB и ADC ровны(AC общий, AB=CD и угол между ровными сторонами 90 градусов)
Отсюда выходит что угол ADC=CBA=25 градусов а угол ACB из треугольника где один угол 90(угол A) градусов а второй CBA=25
Отсюда следует что ACB=180-90-25 =65градусов
ответ 65