Sромба=(d₁*d₂)/2, d₁-диагональ АС ромба АВСД, d₂ -диагональ ВД 600=(40*d₂)/2, 600=d₂*20, d₂=30 см диагонали пересекаются в точке О и делятся пополам. сторона ромба АВ²=АО²+ОВ², (АО=d₁/2=20 cм, ОВ=d₂/2=15 см) АВ²=20²+15². АВ=25 см ΔАОВ: АВ= 25 см, АО=20 см, ВО= 15 см. ОМ перпендикулярна АВ. рассмотрим Δ АМО: АМ =х см, АО=20см МО найти. МО²=20²-х² рассмотрим Δ ВМО: ВМ =25-х см, ВО=15см МО найти. МО²=15²-(25-х)² 20²-х²=15²-(25-х)² 400-х²=225-625+50х-х² 50х=800, х=16. найдем МО: МО²=15²-(25-16)², МО=12 см. рассмотрим ΔМОР (Р -точка, отстоящая от плоскости ромба на расстоянии 16 см) МР= -наклонная, РО=16 см- перпендикуляр к плоскости ромба (по условию) МО- проекция наклонной МР. МР перпендикулярна стороне ромба АВ, следовательно и наклонная перпендикулярна АВ по т. о трех перпендикулярах. ΔМОР прямоугольный, по т. Пифагора: МР²=МО²+РО² МР²=12²+16², МР²=400, МР =20см. ответ: расстояние от точки до каждой стороны ромба =20 см.
Отрезок АМ = (2/3)*15 = 10 см. Находим стороны треугольника ВМС. МВ = 10√2 = 14.142136 см. МС = √(10²+17²) = √(100+289) = √389 = 19.723083 см. Площадь сечения BMC находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). a b c p 2p S 21 19.7231 14.1421 27.43261 54.8652 134.4656 см². cos A = 0.2653029 cos B = 0.4242641 cos С = 0.76053019 Аrad = 1.3022783 Brad = 1.1326473 Сrad = 0.706667049 Аgr = 74.615051 Bgr = 64.89591 Сgr = 40.48903943.
Эту задачу можно решить другим Надо найти высоту АН основания. Находим площадь основания: a b c p 2p So 21 17 10 24 48 84 см². Высота АН = 2S/ВС = 2*84/21 = 8 см. Высота МН в искомом сечении равна: МН = √(10²+8²) = √(100+64) = √164 = 12.8062 см. Отсюда площадь искомого сечения равна: S = (1/2)МН*ВС = (1/2)*12.8062*21 = 134.4656 см².
Есть и третий определения площади искомого сечения. Для этого надо найти cosα угла наклона секущей плоскости к основанию. S = So/cosα = 84/(8/√164 ) = 134.4656 см².
600=(40*d₂)/2, 600=d₂*20, d₂=30 см
диагонали пересекаются в точке О и делятся пополам.
сторона ромба АВ²=АО²+ОВ², (АО=d₁/2=20 cм, ОВ=d₂/2=15 см)
АВ²=20²+15². АВ=25 см
ΔАОВ: АВ= 25 см, АО=20 см, ВО= 15 см.
ОМ перпендикулярна АВ.
рассмотрим Δ АМО: АМ =х см, АО=20см МО найти. МО²=20²-х²
рассмотрим Δ ВМО: ВМ =25-х см, ВО=15см МО найти. МО²=15²-(25-х)²
20²-х²=15²-(25-х)²
400-х²=225-625+50х-х²
50х=800, х=16.
найдем МО: МО²=15²-(25-16)², МО=12 см.
рассмотрим ΔМОР (Р -точка, отстоящая от плоскости ромба на расстоянии 16 см)
МР= -наклонная, РО=16 см- перпендикуляр к плоскости ромба (по условию)
МО- проекция наклонной МР. МР перпендикулярна стороне ромба АВ, следовательно и наклонная перпендикулярна АВ по т. о трех перпендикулярах.
ΔМОР прямоугольный, по т. Пифагора: МР²=МО²+РО²
МР²=12²+16², МР²=400, МР =20см.
ответ: расстояние от точки до каждой стороны ромба =20 см.
Находим стороны треугольника ВМС.
МВ = 10√2 = 14.142136 см.
МС = √(10²+17²) = √(100+289) = √389 = 19.723083 см.
Площадь сечения BMC находим по формуле Герона:
S = √(p(p-a)(p-b)(p-c)).
a b c p 2p S
21 19.7231 14.1421 27.43261 54.8652 134.4656 см².
cos A = 0.2653029 cos B = 0.4242641 cos С = 0.76053019 Аrad = 1.3022783 Brad = 1.1326473 Сrad = 0.706667049
Аgr = 74.615051 Bgr = 64.89591 Сgr = 40.48903943.
Эту задачу можно решить другим
Надо найти высоту АН основания.
Находим площадь основания:
a b c p 2p So
21 17 10 24 48 84 см².
Высота АН = 2S/ВС = 2*84/21 = 8 см.
Высота МН в искомом сечении равна:
МН = √(10²+8²) = √(100+64) = √164 = 12.8062 см.
Отсюда площадь искомого сечения равна:
S = (1/2)МН*ВС = (1/2)*12.8062*21 = 134.4656 см².
Есть и третий определения площади искомого сечения.
Для этого надо найти cosα угла наклона секущей плоскости к основанию.
S = So/cosα = 84/(8/√164 ) = 134.4656 см².