Проведем высоту к нижнему основанию.Высота разделит угол в 150 ° на 2 угла , которые будут равны 90° и 150 - 90 = 60°.В треугольнике , который образовался при проведении высоты углы равны 90°, 60° и третий угол равен 180 - ( 90 + 60 ) = 30°, а мы знаем что в прямоугольном треугольнике сторона лежащая против угла в 30° равна половине гипотенузы. В нашем случае сторона , лежащая против угла в 30° - это высота трапеции , а гипотенуза - это боковая сторона трапеции она равна 5\2 = 2.5 см - высота трапеции.
Площадь трапеции равна половине суммы оснований , умноженная на высоту
Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.
Проведем высоту к нижнему основанию.Высота разделит угол в 150 ° на 2 угла , которые будут равны 90° и 150 - 90 = 60°.В треугольнике , который образовался при проведении высоты углы равны 90°, 60° и третий угол равен 180 - ( 90 + 60 ) = 30°, а мы знаем что в прямоугольном треугольнике сторона лежащая против угла в 30° равна половине гипотенузы. В нашем случае сторона , лежащая против угла в 30° - это высота трапеции , а гипотенуза - это боковая сторона трапеции она равна 5\2 = 2.5 см - высота трапеции.
Площадь трапеции равна половине суммы оснований , умноженная на высоту
32 - 5*2 = 22 см - сумма оснований
22 \ 2 * 2.5 = 27.7 см - площадь трапеции
Надеюсь, что ты понял(а)
Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.