Решите не по теореме синусов. правильный ответ отмечу лучшим.в остроугольном треугольнике авс ас=b, ∠a=α, ∠c=β. выразите проекции сторон ав и вс на сторону ас.
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
2числа нашла 1)628750=шепнул 2)682750= шепнул ответ: 1) 3143750=крикнул 2)3413750=крикнул решение можно так попробовать: 1. л=0 или 5 т.к. сумма других пяти одинаковых слагаемых (цифр) не будет оканчиваться на ту же цифру 2. а) если л=0 , то у=5 (так же как 1 пункт) б) если л=5, то у*5=у+1 такого быть не может итак, в конце 50 (если при умножениипоследних двух букв получаются те же буквы,то это по любому 50) 3. н не может равняться 1 , т.к. 5 занята буква у, значит н=7 (7*5 +2 = последняя цифра 7) далее к не может быть меньше 3 ( это расскажешь) , а т.к. тройка была в уме , то к ровно 3 4. дальше понятно ш=6 ( иначе ответ не с 3 будет начинаться) 5 к=3 ,то п*5 должно оканчиваться на 0 => р=8 или 2
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.