В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
урган1
урган1
31.03.2020 15:17 •  Геометрия

Решите неравенство (225—226): 225. 1) x+2> 15;
4) -4 >5-у;
3) 3Sy+6;
2) x-6< 8;
5) 227-7;
6) 37 < 27 + 4.​

Показать ответ
Ответ:
MarinaSc1
MarinaSc1
16.03.2022 10:58
Высота равнобедренного треугольника, опущенная на основание является и 
медианой и делит исходный треугольник на два равных прямоугольных треугольника (один катет общий, два других - половинки основания исходного
тр - ка, также равны и гипотенузы как боковые стороны равнобедренного тр-ка)
Это справедливо и для второго равнобедренного тр-ка.  Имеем 4 равных прямоугольных треугольника (все гипотенузы равны и по теореме Пифагора),
они попарно образуют равнобедренные тр-ки, которые тоже равны (равны основания и боковые стороны).
0,0(0 оценок)
Ответ:
БЕРЕНА
БЕРЕНА
05.09.2020 11:44
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть 
c2 = a2 + b2,
где c — гипотенуза треугольника.Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри тре­угольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношенияТеорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.Теорема 8 (формулы для вычисления площади треугольника).4Последняя формула называется формулой Герона.Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).Теорема 13 (формула для вычисления длины медианы). Доказательства некоторых теоремДоказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов:
BD2 = AB2 + AD2 – 2∙AB∙AD∙cos ∠BAD;
CD2 = AC2 + AD2 – 2∙AC∙AD∙cos ∠CAD.
Или, что то же самое,
Выразим из каждого неравенства и приравняем полученные результаты:Применив теперь к треугольнику ABC теорему о биссектрисе внутреннего угла, получим, чтоОтдельно преобразуем выражение cx2 – by2:
Последнее равенство верно в силу того, что  Имеем далее:

Если c ≠ b, то, сократив обе части равенства на c – b, получим требуемую формулу; если же c = b, то данная теорема сводится к теореме Пифагора.Доказательство теоремы 11. Построим тре­угольник ABC и проведем в нем биссектрису AD (см. рис. 8). Имеем:С другой стороны,
Приравнивая полученные двумя значения площади треугольника ABC, имеем:При этом мы использовали формулу 
Доказательство теоремы 13. Построим треугольник ABC и проведем в нем медиану AA1 (см. рис. 7). Применим в треугольниках AA1B и AA1C теорему косинусов:Или, что то же самое,
где ϕ = ∠AA1B. Так как cos (π – ϕ) = –cos ϕ, сложив последние два равенства, получим:Решение задачЗадача 1. В прямоугольном треугольнике ABC из вершины прямого угла C проведены биссектриса CL и медиана CM (рис. 9). Найти площадь треугольника ABC, если LM = a, CM = b.
Решение. Медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы. Поэтому AM = BM = b,
откуда AL = b – a, LB = b + a. Применим к треугольнику ABC теорему о биссектрисе внутреннего угла треугольника:
Применив теперь к треугольнику ABC теорему Пифагора, получим:
откудаА искомая площадь равна ответ: Задача 2. В треугольнике ABC задана точка M на стороне AC, соединенная с вершиной B отрезком MB (рис. 10). Известно, что AM = 6, MC = 2, ∠ABM = 60°, ∠MBC = 30°. Найти площадь треугольника ABC.
Решение. Применим к треугольникам ABM и BCM теорему синусов:Так как треугольник ABC прямоугольный, то  Разделив равенство (1) на равенство (2), с учетом sin ∠AMB = sin ∠BMC находим, что откуда ∠ACB = 60°.
Значит, площадь треугольника ABC равна ответ: 
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота