Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Наверное найти расстояние от центра окружности до точки Е.
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см. Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС. Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.
Нетрудно догадаться, что АЕ=8см, а ЕВ=7см.
Из центра окружности опускаем перпендикуляр на хорду. (обознацим центр окружности О, а пересечение хорды и перпендикуляра С) . Тогда перпендикуляр делит хорду пополам, а значит АС=7,5 см. Точку О соединим с точкой А. ОА=9см. Треугольник АОС прямоугольный. Поэтому по теореме Пифагора находим ОС.
Овет полчается корень из 17. Около 4,1231. Теперь возьмём треугольник ОСЕ. Он тоже прямоугольный. СЕ=0,5см, ОС нам тоже известно, поэтому по теореме Пифагора находим ОЕ.