Тк бессектрисы углов обращуют углы 45 градусов пусть p,q точки пересечения бессектрис соседних углов h,m точки сечения других бессектрис рассмотрим треугольники chd и bma тк у них углы при основаниях равны 45 то они прямоугольные равнобедренные по тому же принципу доказываем что треугольники b01c bc02 a03d и ad04 то де прямоугольные равнобедренные 01,,04 точки сечения бесссектрис со сторонами отсюда следует 2 утверждения что 4 угольник dkqm-квадрат и что bc0102 и ad0304 равные квадраты ну теперь можно решать тк периметр искомого 4 угольника 40sqrt(2) то сторона 10sqrt(2) теперь по теореме Пифагора найдем dq=10sqrt(2)*sqrt(2)=20. Обозначим сторону равных квадратов за a тогда bc=a ab=a/2+a/2+20=a+20 тогда периметр прямоугольника равен 2(a+a+20)=52 4a+40=52 4a=12 a=3 тогда 2 сторона 23 она и наибольшая ответ:23
Хорды АВ=СД=8, проводим радиусы АО=ВО=СО=ДО, треугольник АОВ=треугольник СОД по двум сторонам и углу между ними уголАОВ=уголСОД (уголАОВ и уголСОД-центральные углы, уголАОД=дуге АВ, уголСОД=дуге СД, равные хорды отсекают равные дуги, дуга СД=дуге АВ), проводим высоты ОН на АВ и ОК на СД, в равных треугольниках высоты проведенные на основание равны ОН=ОК, НК-расстояние=6, ОН=НК=1/2НК=6/2=3, ОН=ОК=медианам, биссектрисам, треугольники равнобедренные, АН=ВН=1/2АВ=8/2=4, треугольник АНО прямоугольный, АО=корень(АН в квадрате+ОН в квадрате)=корень(16+9)=5=радиус