1)Полусумма диагоналей равна 70/2= 35/см/, половина одной диагонали пусть х, тогда половина другой (35-х), по теореме Пифагора х²+(35-х)²=25²
х²+1225-70х+х²-625=0
2х²-70х+600=0; х²-35х+300=0, откуда по теореме, обратной теореме Виета, х₁=15, х₂=20
Значит, если одна половина 15, то другая 20, и наоборот, если одна 20, то другая 15
Диагонали, стало быть, равны 40см и 30 см. Площадь ромба равна
40*30/2=600/см²/
2) Меньшая бок. сторона - она же и высота трапеции, чтобы найти среднюю линию, достаточно найти другую бок. сторону - большую, а потом их полусумму, поскольку сумма боковых сторон равна сумме оснований, т.к. в эту трапецию можно вписать окружность. Опустим из вершины тупого угла на нижнее большее основание высоту, получим прямоугольный треугольник, с углом в 60°, против него лежит катет 8√3см,
Значит, гипотенуза, она же и большая бок. сторона, равна 8√3/sin60°=8√3/(√3/2)=16/cм/, значит, полусумма оснований равна
(8√3+16)/2=(4√3+8)/см/, высота трапеции равна 8√3см, площадь
Шар называется вписанным в конус, если он касается всех образующих конуса и основания конуса.
Vшара=(4/3)*πr³
r - радиус шара
в сечении конуса через вершину и центр окружности основания в данной задаче мы имеем равносторонний треугольник, т.к. две стороны равны(они же являются образующими) и угол наклона образующий к основанию равен 60..центр окружности шара вписанного в такой конус будет лежать на пересечении двух высот треугольника ABC.
из прямоуг-го треуг-ка ВСH, зная что ВС-образующая и равна 6√3, а угол ВСH=60 градусам, т.к. образующая наклонена к плоскости основания под углом 60 градусов, найдем чему равна сторона HC,
cos60=HC/BC значит HC=cos60*BC=(1/2)*(6√3)=3√3
зная что в равностороннем треугольнике высота и биссектриса равны, то угол HCO=уголС/2=60/2=30градусов
из прямоугольного тругольника OHC найдем OH (это и есть радиус шара)
OH/HC=tg30; ОH=HC*tg30=3√3*(1/√3)=3
Найдя радиус шара можно найти ее объем:
Vшара=(4/3)*πr³=(4/3)π*3³=36π
(можно перемножить на π=3,14, тогда объем будет равен 113,04...)
1)Полусумма диагоналей равна 70/2= 35/см/, половина одной диагонали пусть х, тогда половина другой (35-х), по теореме Пифагора х²+(35-х)²=25²
х²+1225-70х+х²-625=0
2х²-70х+600=0; х²-35х+300=0, откуда по теореме, обратной теореме Виета, х₁=15, х₂=20
Значит, если одна половина 15, то другая 20, и наоборот, если одна 20, то другая 15
Диагонали, стало быть, равны 40см и 30 см. Площадь ромба равна
40*30/2=600/см²/
2) Меньшая бок. сторона - она же и высота трапеции, чтобы найти среднюю линию, достаточно найти другую бок. сторону - большую, а потом их полусумму, поскольку сумма боковых сторон равна сумме оснований, т.к. в эту трапецию можно вписать окружность. Опустим из вершины тупого угла на нижнее большее основание высоту, получим прямоугольный треугольник, с углом в 60°, против него лежит катет 8√3см,
Значит, гипотенуза, она же и большая бок. сторона, равна 8√3/sin60°=8√3/(√3/2)=16/cм/, значит, полусумма оснований равна
(8√3+16)/2=(4√3+8)/см/, высота трапеции равна 8√3см, площадь
8√3*(4√3+8)=(32*3+64√3)=(96+64√3)/см²/
36π
Объяснение:
Шар называется вписанным в конус, если он касается всех образующих конуса и основания конуса.
Vшара=(4/3)*πr³
r - радиус шара
в сечении конуса через вершину и центр окружности основания в данной задаче мы имеем равносторонний треугольник, т.к. две стороны равны(они же являются образующими) и угол наклона образующий к основанию равен 60..центр окружности шара вписанного в такой конус будет лежать на пересечении двух высот треугольника ABC.
из прямоуг-го треуг-ка ВСH, зная что ВС-образующая и равна 6√3, а угол ВСH=60 градусам, т.к. образующая наклонена к плоскости основания под углом 60 градусов, найдем чему равна сторона HC,
cos60=HC/BC значит HC=cos60*BC=(1/2)*(6√3)=3√3
зная что в равностороннем треугольнике высота и биссектриса равны, то угол HCO=уголС/2=60/2=30градусов
из прямоугольного тругольника OHC найдем OH (это и есть радиус шара)
OH/HC=tg30; ОH=HC*tg30=3√3*(1/√3)=3
Найдя радиус шара можно найти ее объем:
Vшара=(4/3)*πr³=(4/3)π*3³=36π
(можно перемножить на π=3,14, тогда объем будет равен 113,04...)