Высота боковой грани пирамиды равна корню квадратному из суммы квадратов высоты пирамиды и квадрата половины длины стороны основания или √((10:2)²+12²)=√√169=13 (дм) площадь каждой из боковых граней: 13*10/2=65(дм²) площадь боковой поверхности пирамиды: 130*4=260 (дм²) площадь боковой поверхности пирамиды и основания: 260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани 360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
Есть у высоты равнобедренной трапеции, опущенной из тупого угла, свойство: она делит большее основание на две части, меньшая из которых равна полуразности оснований, большая - их полусумме. Откуда оно появилось - легко понять из рисунка. Опустив из В высоту ВН на АД, получим АН=(АД-ВС):2 =(16-4):2=6 Треугольник АВН - прямоугольный. Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5. Здесь коэффициент этого отношение k=10:5=2 ВН=4*2=8 см Но можно ВН найти по т. Пифагора - результат будет тем же. ВН=√(АВ²-АН²)=√(100-36)=8 см
√((10:2)²+12²)=√√169=13 (дм)
площадь каждой из боковых граней:
13*10/2=65(дм²)
площадь боковой поверхности пирамиды:
130*4=260 (дм²)
площадь боковой поверхности пирамиды и основания:
260+(10*10)=360 (дм²) ткани необходимо, чтобы сшить саму палатку и ее основание не считая расхода материалов на швы и обрезки.
360:2=180 (дм²)-составляют 50% от необходимого количества ткани
360+180=540 (дм²)ткани необходимо, чтобы сшить саму палатку и ее основание с учетом швов и обрезков
Опустив из В высоту ВН на АД, получим
АН=(АД-ВС):2 =(16-4):2=6
Треугольник АВН - прямоугольный.
Гипотенуза АВ=10, катет АН=6, и тут же вспоминается "египетский треугольник" с отношением сторон 3:4:5.
Здесь коэффициент этого отношение k=10:5=2
ВН=4*2=8 см
Но можно ВН найти по т. Пифагора - результат будет тем же.
ВН=√(АВ²-АН²)=√(100-36)=8 см