Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
Треугольник ВОР подобен треугольнику ВDA, тк у них совпадают все ∠(по 60°) В треугольнике BDA все ∠ по 60°, тк во-первых он равнобедренный (AD = AB), значит ∠ у основания равны, значит и третий ∠ равен 180-60-60=60° ∠ В общий у треугольников BOP и BDA и равен тоже 60°, а ∠ ВOP и ∠BPO равны ∠ BDA, ∠BAD треугольника BDA, тк PO ||AD, BD и BA секущие и по одному из св-в внешние углы равны Значит треугольник ВОР тоже равносторонний, а в равностороннем треугольнике радиус оп. окр. вычисляется по формуле а√3 делить на 3. Вместо "а" подставляем значение стороны ВР и получаем 6√3/3, что ≈ 3,46
№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
В треугольнике BDA все ∠ по 60°, тк во-первых он равнобедренный (AD = AB), значит ∠ у основания равны, значит и третий ∠ равен 180-60-60=60°
∠ В общий у треугольников BOP и BDA и равен тоже 60°, а ∠ ВOP и ∠BPO равны ∠ BDA, ∠BAD треугольника BDA, тк PO ||AD, BD и BA секущие и по одному из св-в внешние углы равны
Значит треугольник ВОР тоже равносторонний, а в равностороннем треугольнике радиус оп. окр. вычисляется по формуле а√3 делить на 3. Вместо "а" подставляем значение стороны ВР и получаем
6√3/3, что ≈ 3,46