1. Против угла 30° лежит катет в два раза меньше гипотенузы ⇒ ВС=10/2=5 ед.
2. ΔАВС равнобедренный (углы 90, 45 и 45). CD - высота, биссектриса и медиана проведенные из вершины равнобедренного, прямоугольного треугольника. Медиана, проведенная из прямого угла треугольника равна половине его гипотенузы. ⇒ АВ=8*2=16 ед.
3. ЕС - катет прямоугольного треугольника ЕВС лежащий против угла 30° ⇒ ЕВ=7*2=14. По т. Пифагора ВС=√(14²-7²)=√147. ВС - катет прямоугольного треугольника АВС лежит против угла 30° ⇒АВ=2√147. По т. Пифагора АС=√((2*147)²-(√147)²)=21.
Задача номер 1 :
В прямоугольном треугольнике сумма острых углов равна= 90° , значит уголВ+угол А = 90°
Угол А=30°
В прямоугольном треугольнике катет лежащий напротив угла в 30° равен половине гипотенузы . Т.е. ВС=ВА:2
ВС=10:2
ВС=5 см
ответ : ВС=5 см .
1. Против угла 30° лежит катет в два раза меньше гипотенузы ⇒ ВС=10/2=5 ед.
2. ΔАВС равнобедренный (углы 90, 45 и 45). CD - высота, биссектриса и медиана проведенные из вершины равнобедренного, прямоугольного треугольника. Медиана, проведенная из прямого угла треугольника равна половине его гипотенузы. ⇒ АВ=8*2=16 ед.
3. ЕС - катет прямоугольного треугольника ЕВС лежащий против угла 30° ⇒ ЕВ=7*2=14. По т. Пифагора ВС=√(14²-7²)=√147. ВС - катет прямоугольного треугольника АВС лежит против угла 30° ⇒АВ=2√147. По т. Пифагора АС=√((2*147)²-(√147)²)=21.
АЕ=АС - ЕС=21-7=14 ед.