Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).
ответ
ответ дан
ivanproh1
S = 102 см²
Объяснение:
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Получается четыре прямоугольных треугольника, в которых гипотенузы равны стороне ромба, а катеты - половинам диагоналей. Тогда по Пифагору 26²= Х² +(Х-14)², где Х - половина большей диагонали. Из этого уравнения находим
Х = 7±√(49+240) = 17см.
Тогда половина меньшей диагонали равна 17-14 = 3см и площадь одного треугольника равна (1/2)*17*3 = 25,5см². Таких треугольников в ромбе четыре.
Площадь ромба равна 4*25,5 = 102см².
Можно через диагонали:
S=(1/2)*D*d = (1/2)*34*6 = 102 см².
Условие задачи некорректно составлено.
Объяснение:
Пусть одна сторона треугольника равна х см; вторая сторона- 4х см; третья сторона- 5х см.
Периметр треугольника - сумма всех сторон.
Составляем уравнение:
х+4х+5х=50
10х=50
х=50/10
х=5 см первая сторона треугольника
4*5=20 см вторая сторона треугольника.
5*5=25 см третья сторона треугольника.
Для того, чтобы треугольник существовал необходимо чтобы сохранялось неравенство: сумма двух сторон треугольника должна быть больше третьей стороны.
5+20=25 (неравенство не сохраняется, такого треугольника нет). Дальнейшее решение не возможно.
Так как стороны треугольника отрезки, а не лучи, то "При таких значениях треугольник является вырожденным, т.е. представляет собой ОТРЕЗОК, на котором расположены все три вершины
При таких значениях треугольник является вырожденным, т.е. представляет собой развернутый угол.
Вписать окружность не возможно, описать можно, тогда радиус описанной окружности будет равен 25:2=12,5см. Чертеж прилагаю. АВС- вырожденный треугольник. АВ=25см; АС=5см; СВ=20см
Площадь по Герону
S=√(р(р-а)(р-b)(p-c))
p=P/2=50/2=25см.
S=√(25(25-5)(25-20)(25-25))=√(25*20*5*0)=
=√0
R=(a*b*c)/4S формула нахождения радиуса описанной окружности. (Решения нет, т.к. площади треугольника нет)
r=S/p формула нахождения радиуса вписанной окружности, где р- полупериметр треугольника; (Решения нет, т.к. площади треугольника нет).