Основания трапеции делятся точкой касания на два отрезка, один из которых равен радиусу, т.е. 3. Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8. По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9. Имеем систему уравнений. {a-b=8 a*b=9 Находим a и b. а=9, b=1. Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.
1)угол АСВ=44 по теории о парал.прямых
смежный угол ЕDA, ЕDС = 78, а по Т. о смеж.углах известно, что
сумма смеж.углов равна 180⇒
АDС = 180 - 78 = 102
теперь нам известно 2 угла из треугольника АDС (сумма углов равна 180), то есть, 180 - 44 - 102 = 34.
угол АСD = 34
но тут, чтобы узнать угол АСВ нужно 180-102 - 34= 44(так мы нашли его)
2) теперь можно найти угол ВАС:
тут опять же смеж.углы, то есть, 180-44=136
а по условию известно что секущая делит угол КАС пополам, ⇒ 136:2=68
3)теперь в треугольнике АВС нам известно 2угла
1угол= 68
2угол = 44
а сумма всех углов в треугольнике равна 180
и так мы можем узнать угол АВС ⇒
180-68-44=68
угол АВС = 68
угол АСВ=44
угол ВАС=68
Обозначим эти отрезки как а и b, где а принадлежит большему основанию. Тогда a-b=8.
По свойству прямоугольной трапеции, в которою вписана окружность, произведение отрезков, на которые делит точка касания, боковую сторону равно радиусу в квадрате. Т.к. эти отрезки равны а и b, по свойствам касательных, проведенных к окружности из одной точки, мы можем записать a*b=9.
Имеем систему уравнений. {a-b=8
a*b=9
Находим a и b. а=9, b=1.
Далее находим основания: 3+9=12, 3+1=4, и боковые стороны 3+3=6, 9+1=10. Суммируем и получаем периметр.