1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
R = 3\sqrt{2}3
2
м
S = 36 м2
Объяснение:
R - радиус описанной вокруг квадрата окружности. По свойству радиуса описанной около квадрата окружности, радиус равен половине диагонали квадрата.
Рассмотрим ΔHEF: < HEF = 90^{0}90
0
, HE = 6 м = EF. По теореме Пифагора найдем гипотенузу HF:
\begin{gathered}HF^{2} = HE^{2} + EF^{2} = 6^{2} + 6^{2} = 36 + 36 = 72\\HF = \sqrt{72} = \sqrt{2*36} = 6\sqrt{2}\end{gathered}
HF
2
=HE
2
+EF
2
=6
2
+6
2
=36+36=72
HF=
72
=
2∗36
=6
2
HF также является диагональю квадрата, тогда R = HF : 2 = 6\sqrt{2} : 2 = 3\sqrt{2}6
2
:2=3
2
Площадь квадрата равна квадрату его стороны, то есть нужно возвести сторону квадрата во вторую степень:
S_{HEFG} = 6^{2} = 36.S
HEFG
=6
2
=36.
1) ∠E--общий для треугольников ΔΕΒС и ΔЕАD. Также, поскольку основы трапеции АD и ΒС параллельны, то DС--секущая, поэтому углы
∠ΕСВ=∠ЕDА как соответсвенные.
АВ также секущая, поэтому и ∠ΕΒС=∠ЕАD как соответсвенные.
Таким образом, ΔΕΒС и ΔЕАD подобные по трём углам ΔΕΒС ~ ΔЕАD.
Значит, все их соответствующие стороны пропорциональны => АD/ΒС=АЕ/ВЕ
7/3=14/ВЕ
ВЕ=3*14/7=3*2=6 см
2) Это треугольники ΔMEK~ΔBAK~ΔBEA~ΔMAN (т.к. согласно свойствам секущей, их соответсвенные углы равны, и их три угла равны)
3) По свойствам прямоугольника, диагонали точкой пересечения делятся попалам и они равны => OD=OC=24/2=12 см
Поэтому ΔCOD-равнобедренный
<COD=<BOA как вертикальные
<COD+<АOD=180°, т.к. они смежные
Обозначим <COD=х, <АOD=х+60°
Тогда х+х+60°=180°
2х+60°=180°
2х=180°-60°
2х= 120° | : 2
х=60°
Т.к. ΔCOD-равнобедренный, то если угол при его вершине равен 60°, то и два его других угла будут равны 60°, а значит это равносторонний треугольник, поэтому все его стороны равны 12 см
PΔCOD=12*3=36 см