Проведем из О к указанным сторонам трапеции перпендикуляры к АВ -а, к ВС - е, к СD-у
Рассмотрим ∆ ВОа и ВОе. Они прямоугольные , имеют общую гипотенузу ВО и по равному острому углу при В.
Если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны. ⇒
катет аО = еО
Аналогично доказывается равенство катетов еО и уО треугольников СОе и СОу.
Отрезки Оа, Ое, Оу равны и как перпендикуляры от точки до прямой, являются расстоянием от О до АВ, до ВС и до AD.
Т.е. О - равноудалена от прямых АВ, ВС и AD, ч.т.д.
Как вариант: Из теоремы:
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон, следует:
Точка О - общая для биссектрис двух углов с общей стороной ВС, следовательно, равноудалена от прямых, содержащих их стороны.
Если катеты равны 7см и 24 см, то гипотенуза равна√(7² + 24²) = √(49 + 576) = √625 = 25 см. Площадь треугольника основания So = (1/2)7*24 = 84 см². Полупериметр основания р = (7+24+25)/2 = 56/2 = 28 см. Тогда радиус вписанной в основание окружности равен r = So/p = 84/28 = 3 см. Этот радиус равен проекции высоты h каждой боковой грани пирамиды. h = r/(cosα) = 3/(1/2) = 6 см. Площадь боковой поверхности Sбок = (1/2)Ph = (1/2)*56*6 = 168 см². Полная поверхность равна: S = So + Sбок = 84 + 168 = 252 см².
Рассмотрим ∆ ВОа и ВОе. Они прямоугольные , имеют общую гипотенузу ВО и по равному острому углу при В.
Если гипотенуза и прилежащий к ней угол одного прямоугольного треугольника соответственно равны гипотенузе и прилежащему углу другого треугольника, то такие треугольники равны. ⇒
катет аО = еО
Аналогично доказывается равенство катетов еО и уО треугольников СОе и СОу.
Отрезки Оа, Ое, Оу равны и как перпендикуляры от точки до прямой, являются расстоянием от О до АВ, до ВС и до AD.
Т.е. О - равноудалена от прямых АВ, ВС и AD, ч.т.д.
Как вариант: Из теоремы:
Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон, следует:
Точка О - общая для биссектрис двух углов с общей стороной ВС, следовательно, равноудалена от прямых, содержащих их стороны.
Подробнее - на -
Площадь треугольника основания So = (1/2)7*24 = 84 см².
Полупериметр основания р = (7+24+25)/2 = 56/2 = 28 см.
Тогда радиус вписанной в основание окружности равен r = So/p = 84/28 = 3 см. Этот радиус равен проекции высоты h каждой боковой грани пирамиды. h = r/(cosα) = 3/(1/2) = 6 см.
Площадь боковой поверхности Sбок = (1/2)Ph = (1/2)*56*6 = 168 см².
Полная поверхность равна:
S = So + Sбок = 84 + 168 = 252 см².