Решите . Пусть вектор AB=вектору а, вектор АС=вектор b, D принадлежит AC, AD:DC=2:3, E принадлежит BD, BE:ED=3:2. Выразите вектор АЕ через векторы а и b.
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
1) подставим координаты точки в уравнение: 4+3-7=0 0=0 тк равенство верно, то точа А лежит на этой прямой
2) тк прямая паралельна оси Ох (абсцисс), то прямая имеет вид у=к и именно прямая у=3 будет проходить через точку N
3) уравнение прямой - у=кх+б у нас имеется 2 точки - О(0;0) и D(3;-2) подставим координаты в это уравнения и у нс получится система: 0=б -2=3к+б
б=0 и к=-2\3
наша прямая имеет уравнение у=-2\3х
4) уравнение окружности : (х-х0)^2 + (у-у0)^2 =R^2 центр окружности Р(-2;-1), подставим ее координаты в уравнение (х+2)^2+(у+1)^2=R^2
теперь осталось найти радиус найдем длину вектора PQ: PQ{3;4}, |PQ|=корень из(3^2+4^2)=5 именно длина вектора PQ для нас является длиной радиуса окружности
конечный вид уравнения окружности: (х+2)^2+(у+1)^2=25
5) Найдем длину вектора АВ АВ{3;4} (АВ в модуле - длина вектора) |АВ|=корень из(3^2+4^2)= 5 длина между точками А и В = 5
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16
4+3-7=0
0=0
тк равенство верно, то точа А лежит на этой прямой
2) тк прямая паралельна оси Ох (абсцисс), то прямая имеет вид у=к
и именно прямая у=3 будет проходить через точку N
3) уравнение прямой - у=кх+б
у нас имеется 2 точки - О(0;0) и D(3;-2)
подставим координаты в это уравнения и у нс получится система:
0=б
-2=3к+б
б=0 и к=-2\3
наша прямая имеет уравнение у=-2\3х
4) уравнение окружности : (х-х0)^2 + (у-у0)^2 =R^2
центр окружности Р(-2;-1), подставим ее координаты в уравнение
(х+2)^2+(у+1)^2=R^2
теперь осталось найти радиус
найдем длину вектора PQ:
PQ{3;4}, |PQ|=корень из(3^2+4^2)=5
именно длина вектора PQ для нас является длиной радиуса окружности
конечный вид уравнения окружности:
(х+2)^2+(у+1)^2=25
5) Найдем длину вектора АВ
АВ{3;4} (АВ в модуле - длина вектора) |АВ|=корень из(3^2+4^2)= 5
длина между точками А и В = 5