Решите Решите треугольник АВС, если угол А равен 600, сторона в=10, сторона с=7 №2 Решите треугольник АВС, если сторона а=6, сторона с=8, сторона в=10м
На рисунке АВ:АD = АС:АЕ = ВС:ЕD. Это означает, что ΔАВС подобен ΔADE и ∠АВС = ∠ADE; ∠ВСА = ∠AED.
Объяснение:
1. 2-й признак подобия: "Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого, и углы, лежащие между ними, равны".
В нашем случае АВ/AD = АС/АЕ и ∠А - общий. Значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
2. 3-й признак подобия: "Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого".
В нашем случае AB/AD=AC/AE = BC/ED, значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
Даны вершины А(-2; 1), В(1; 4), С(5; 0) i D(2; -3).
Фигура АВСД прямоугольник, если стороны попарно равны и диагонали равны.
Длины сторон.
AB = √((xB-xA)² + (yB-yA)²) = √18 = 4,242640687
BC = √((xC-xB)² + (yC-yB)²) = √32 = 5,656854249
CD = √((xD-xC)² + (yD-yC)²) = √18 = 4,242640687
AD = √((xC-xA)² + (yC-yA)²) = √32 = 5,656854249 .
Длины диагоналей.
AC = √((xC-xA)² + (yC-yA)²) = √50 = 7,071067812
BD = √((xD-xB)² + (yD-yB)²) = √50 = 7,071067812 .
Как видим, эти свойства подтверждены, АВСД - прямоугольник.
На рисунке АВ:АD = АС:АЕ = ВС:ЕD. Это означает, что ΔАВС подобен ΔADE и ∠АВС = ∠ADE; ∠ВСА = ∠AED.
Объяснение:
1. 2-й признак подобия: "Два треугольника подобны, если две стороны одного треугольника пропорциональны двум сторонам другого, и углы, лежащие между ними, равны".
В нашем случае АВ/AD = АС/АЕ и ∠А - общий. Значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.
2. 3-й признак подобия: "Два треугольника подобны, если три стороны одного треугольника пропорциональны трем сторонам другого".
В нашем случае AB/AD=AC/AE = BC/ED, значит
ΔАВС ~ ΔADE, => ∠ABC = ∠ADE, ∠BCA = ∠AED как углы, заключенные между соответственными сторонами.