Модуль, это длина вектора. СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго. РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое). Исходя из этого: 1) |AB+BC|=|AC|, то есть |AB+BC|= а. 2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3. |AB+AC|=а*√3. 3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1. |AB+CB|=а*√3. 4) |ВА-ВC|=|CA|=а. 5) |АВ-АC|=|CВ|=а.
СУММА векторов. Начало второго вектора совмещается с концом первого, сумма же есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом второго.
РАЗНОСТЬ. Для получения вектора разности (c) = (a-b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).
Исходя из этого:
1) |AB+BC|=|AC|, то есть |AB+BC|= а.
2) |AB+AC|=|AB+BC1|=|AC1|. АС1 - диагональ параллелограмма, построенного на векторах АВ и АС и вектор АС1 равен 2*АО. Вектор АО- высота равностороннего треугольника и равен а*√3/2. Значит АС1=а*√3.
|AB+AC|=а*√3.
3) |AB+CB|=|AB+C1B1|=|A1B1|. Вектор СВ переносим в конец вектора АВ, получаем вектор С1В1. Сумма - вектор АВ1. Вектор АВ1 по модулю равен вектору АС1.
|AB+CB|=а*√3.
4) |ВА-ВC|=|CA|=а.
5) |АВ-АC|=|CВ|=а.
ответ: Пусть ∠ МВС = Ф, ∠ВМС=ω, ∠А=α, ∠АМВ=β, β+ω=180° как смежные углы и sinβ = sin(180°-ω) = sinω. В ΔАМВ по теореме синусов: sin∠C /АМ = sinω /4, в ΔВМС по т. синусов: sin∠C /3 = sinβ /6 ⇒
3/АМ = 6/4 ⇒ АМ = 2 ⇒ sinω = sinβ = 2*sin∠C
По теореме косинусов для ΔАМВ: АМ² = АВ² + ВМ²- 2*АВ*ВМ*cos∠C ⇒
2² = 4²+3² - 2*4*3*cos∠C ⇒ cos∠C = 21/24 = 7/8 ⇒
sin∠C = (1 - cos²∠C)^1/2 = √15/8, sinω = 2*sin∠C = √15/4, cosω=1/4
Ф = 180° - ω - ∠С ⇒ sin Ф = sin (ω+∠C) = sinω*cos∠C + cosω*sin∠C =
= √15/4 * 7/8 + 1/4 * √15/8 = 8√15/32 = √15/4 = sinω ⇒ по теореме синусов sinФ /МС = sinω /6⇒ МС = 6 ⇒ АС = АМ + МС = 2 + 6 = 8